タグ「条件」の検索結果

42ページ目:全636問中411問~420問を表示)
弘前大学 国立 弘前大学 2012年 第6問
$xy$平面上の楕円$4x^2+9y^2=36$を$C$とする.

(1)直線$y=ax+b$が楕円$C$に接するための条件を$a$と$b$の式で表せ.
(2)楕円$C$の外部の点$\mathrm{P}$から$C$に引いた$2$本の接線が直交するような点$\mathrm{P}$の軌跡を求めよ.
大分大学 国立 大分大学 2012年 第2問
$t$を実数とし,点Pの座標を$(t,\ -t^2)$とする.点Pと直線$\ell_1:2x+y+3=0$の距離を$d_1$とし,点Pと直線$\ell_2:2x-y+4=0$の距離を$d_2$とする.また,$d=d_1+d_2$とおく.

(1)$t=2$のとき,$d$の値を求めなさい.
(2)点Pが直線$\ell_1$上またはその上側にあるための$t$の条件を求めなさい.
(3)$\displaystyle d=\frac{13}{\sqrt{5}}$となる$t$の値を求めなさい.
大分大学 国立 大分大学 2012年 第4問
$t$を実数とし,点$\mathrm{P}$の座標を$(t,\ -t^2)$とする.点Pと直線$\ell_1:2x+y+3=0$の距離を$d_1$とし,点$\mathrm{P}$と直線$\ell_2:2x-y+4=0$の距離を$d_2$とする.また,$d=d_1+d_2$とおく.

(1)$t=2$のとき,$d$の値を求めなさい.
(2)点$\mathrm{P}$が直線$\ell_1$上またはその上側にあるための$t$の条件を求めなさい.
(3)$(2)$のとき,$d$の最小値とそのときの$t$の値を求めなさい.
大分大学 国立 大分大学 2012年 第3問
$t$を実数とし,点Pの座標を$(t,\ -t^2)$とする.点Pと直線$\ell_1:2x+y+3=0$の距離を$d_1$とし,点Pと直線$\ell_2:2x-y+4=0$の距離を$d_2$とする.また,$d=d_1+d_2$とおく.

(1)$t=2$のとき,$d$の値を求めなさい.
(2)点Pが直線$\ell_1$上またはその上側にあるための$t$の条件を求めなさい.
(3)$d$の最小値とそのときの$t$の値を求めなさい.
富山大学 国立 富山大学 2012年 第3問
行列$A=\biggl( \begin{array}{cc}
0 & x \\
y & z
\end{array} \biggr),\ B=\biggl( \begin{array}{cc}
0 & w \\
w & 0
\end{array} \biggr)$は次の条件(ア),(イ)を満たしているとする.

\mon[(ア)] $A^2+A+E=O$
\mon[(イ)] $B^2=E$

ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ O=\biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$である.

(1)$x,\ y,\ z,\ w$がすべて整数で$x < yw$を満たすとき,$x,\ y,\ z,\ w$を求めよ.
(2)(1)で求めた$x,\ y,\ z,\ w$に対して,ベクトル$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr) \ (n=0,\ 1,\ 2,\ \cdots)$を次のように定める.
\begin{itemize}
$\biggl( \begin{array}{c}
p_0 \\
q_0
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$
$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$が決まったとき,硬貨を投げて表が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=A \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$,裏が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=B \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$とする.
\end{itemize}
このとき,$\biggl( \begin{array}{c}
p_3 \\
q_3
\end{array} \biggr)=\biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$となる確率を求めよ.
富山大学 国立 富山大学 2012年 第3問
行列$A=\biggl( \begin{array}{cc}
0 & x \\
y & z
\end{array} \biggr),\ B=\biggl( \begin{array}{cc}
0 & w \\
w & 0
\end{array} \biggr)$は次の条件(ア),(イ)を満たしているとする.

\mon[(ア)] $A^2+A+E=O$
\mon[(イ)] $B^2=E$

ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ O=\biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$である.

(1)$x,\ y,\ z,\ w$がすべて整数で$x < yw$を満たすとき,$x,\ y,\ z,\ w$を求めよ.
(2)(1)で求めた$x,\ y,\ z,\ w$に対して,ベクトル$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr) \ (n=0,\ 1,\ 2,\ \cdots)$を次のように定める.
\begin{itemize}
$\biggl( \begin{array}{c}
p_0 \\
q_0
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$
$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$が決まったとき,硬貨を投げて表が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=A \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$,裏が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=B \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$とする.
\end{itemize}


\mon[(a)] $\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$は$\biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr),\ \biggl( \begin{array}{c}
-1 \\
0
\end{array} \biggr),\ \biggl( \begin{array}{c}
0 \\
-1
\end{array} \biggr)$のいずれかであることを示せ.
\mon[(b)] $\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)=\biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$となる確率を$X_n$,$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)=\biggl( \begin{array}{c}
-1 \\
0
\end{array} \biggr)$となる確率を$Y_n$,$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)=\biggl( \begin{array}{c}
0 \\
-1
\end{array} \biggr)$となる確率を$Z_n$とするとき,$X_{n+1},\ Y_{n+1},\ Z_{n+1}$をそれぞれ$Y_n$を用いて表せ.また,$X_n$を$n$を用いて表せ.
富山大学 国立 富山大学 2012年 第3問
$3$次関数$f(x)=x^3+ax^2+b$について,曲線$y=f(x)$上の点$\mathrm{P}(t,\ f(t))$における曲線の接線を$\ell_t$とする.

(1)$\ell_t$の方程式を求めよ.
(2)$\ell_t$が原点を通るような$t$の値がただ$1$つに定まるための$a,\ b$の条件を求めよ.
(3)$a,\ b$が(2)の条件を満たすとき,点$(a,\ b)$が存在する領域を図示せよ.
徳島大学 国立 徳島大学 2012年 第3問
2次の正方行列$A$で表される1次変換を$f$とする.Oを原点とする座標平面上に,異なる2点P$(x_1,\ y_1)$,Q$(x_2,\ y_2)$があって,次の2つの条件を満たす.

条件1:1次変換$f$により,点Pは点$(-2x_2,\ -2y_2)$に移る.
条件2:合成変換$f \circ f$により,点Qは点$(4x_1,\ 4y_1)$に移る.


(1)行列$A^3$で表される1次変換により,点Pは点$(-8x_1,\ -8y_1)$に,点Qは点$(-8x_2,\ -8y_2)$に移ることを示せ.
(2)3点O,P,Qは同一直線上にないことを示し,$x_1y_2-x_2y_1 \neq 0$を示せ.
(3)$A^3=-8E$を示せ.ただし,$E$は2次の単位行列である.
東京学芸大学 国立 東京学芸大学 2012年 第3問
関数$f(x)=(x^2+\alpha x+\beta)e^{-x}$について,下の問いに答えよ.ただし,$\alpha,\ \beta$は定数とする.

(1)$f^\prime(x)$および$f^{\prime\prime}(x)$を求めよ.
(2)$f(x)$が$x=1$で極値をとるための$\alpha,\ \beta$の条件を求めよ.
(3)$f(x)$が$x=1$で極値をとり,さらに点$(4,\ f(4))$が曲線$y=f(x)$の変曲点となるように$\alpha,\ \beta$の値を定め,関数$y=f(x)$の極値と,その曲線の変曲点をすべて求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第4問
以下では,実数を成分にもつ行列を考える.

(1)$A=\left( \begin{array}{cc}
a & b \\
0 & d
\end{array} \right)$とする.

(i) $a>0,\ d \geqq 0$または$a \geqq 0,\ d>0$のとき,$X^2=A$を満たす行列$X$を1つ求めよ.
(ii) $a<0$または$d<0$のとき,$X^2=A$を満たす行列$X$が存在するための必要十分条件を$a,\ b,\ d$を用いて表せ.また,この条件が成り立つとき,$X^2=A$を満たす行列$X$を1つ求めよ.
(iii) $a=d=0,\ b \neq 0$のとき,$X^2=A$を満たす行列$X$は存在しないことを示せ.

(2)$B=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right),\ B^2=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.

(i) $p+s=0,\ ps-qr=0$となることを示せ.
(ii) $B \neq \left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$のとき,$X^2=B$を満たす行列$X$は存在しないことを示せ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。