タグ「条件」の検索結果

41ページ目:全636問中401問~410問を表示)
筑波大学 国立 筑波大学 2012年 第1問
$x$の方程式$|\log_{10|x}=px+q \ (p,\ q \text{は実数})$が$3$つの相異なる正の解をもち,次の$2$つの条件を満たすとする.
\begin{itemize}
$3$つの解の比は,$1:2:3$である.
$3$つの解のうち最小のものは,$\displaystyle \frac{1}{2}$より大きく,$1$より小さい.
\end{itemize}
このとき,$A=\log_{10}2,\ B=\log_{10}3$とおき,$p$と$q$を$A$と$B$を用いて表せ.
神戸大学 国立 神戸大学 2012年 第3問
以下の問いに答えよ.

(1)正の実数$x,\ y$に対して
\[ \frac{y}{x}+\frac{x}{y} \geqq 2 \]
が成り立つことを示し,等号が成立するための条件を求めよ.
(2)$n$を自然数とする.$n$個の正の実数$a_1,\ \cdots,\ a_n$に対して
\[ (a_1 +\cdots+a_n) \left( \frac{1}{a_1}+\cdots+\frac{1}{a_n} \right) \geqq n^2 \]
が成り立つことを示し,等号が成立するための条件を求めよ.
静岡大学 国立 静岡大学 2012年 第4問
$x>0$に対して$\displaystyle f(x) =\int_x^{x+1} \log t \, dt$とおき,$y=f(x)$のグラフを$C$とする.このとき,次の問いに答えよ.ただし$\displaystyle \lim_{x \to +0} x \log x = 0$を使ってよい.

(1)$f(x)$と$f^\prime (x)$をそれぞれ求めよ.
(2)定積分$\displaystyle \int_1^2 f(x) \, dx$を求めよ.
(3)$k \geqq 0$を定数とする.直線$y = k(x+1)$と曲線$C$が共有点をもつための条件を求めよ.
広島大学 国立 広島大学 2012年 第4問
$\displaystyle 0 < \theta < \frac{\pi}{2}$とする.原点Oを中心とする単位円周上の異なる3点A,B,Cが条件
\[ (\cos \theta) \overrightarrow{\mathrm{OA}} + (\sin \theta) \overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たすとする.次の問いに答えよ.

(1)2つのベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$は垂直であることを証明せよ.
(2)$|\overrightarrow{\mathrm{CA}}|,\ |\overrightarrow{\mathrm{CB}}|$を$\theta$を用いて表せ.
(3)三角形ABCの周の長さ$\text{AB}+ \text{BC} + \text{CA}$を最大にする$\theta$を求めよ.
九州大学 国立 九州大学 2012年 第4問
$p$と$q$はともに整数であるとする.2次方程式$x^2 + px+q = 0$が実数解$\alpha,\ \beta$を持ち,条件$(|\alpha|-1)(|\beta|-1) \neq 0$をみたしているとする.このとき,数列$\{a_n\}$を
\[ a_n = (\alpha^n-1)(\beta^n-1) \quad (n = 1,\ 2,\ \cdots) \]
によって定義する.以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3$は整数であることを示せ.
(2)$(|\alpha|-1)(|\beta|-1) > 0$のとき,極限値$\displaystyle \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n} \right|$は整数であることを示せ.
(3)$\displaystyle \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1+\sqrt{5}}{2}$となるとき,$p$と$q$の値をすべて求めよ.ただし,$\sqrt{5}$が無理数であることは証明なしに用いてよい.
信州大学 国立 信州大学 2012年 第2問
$xy$平面上の点$(a,\ b)$から曲線$y = x^3-2x$に接線をひく.点$(a,\ b)$からの接線が3本ひけるときの$a,\ b$についての条件を求め,点$(a,\ b)$の存在する領域を図示せよ.
信州大学 国立 信州大学 2012年 第5問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は次の条件をみたすものとする.
\begin{eqnarray}
a+d=1,\ & & A^2-A-2E=O \nonumber \\
& & (\text{ただし,}E \text{は単位行列で,}O \text{は零行列である.}) \nonumber
\end{eqnarray}
このとき,次の問いに答えよ.

(1)次の関係をみたす実数$x,\ y$は$x=y=0$に限ることを示せ.
\[ xA+yE=O \]
(2)自然数$n$に対し,$A^n$はある実数$x_n,\ y_n$を用いて,$A^n=x_n A+y_n E$の形で表せることを示し,数列$\{x_n-y_n\},\ \{2x_n+y_n\}$の一般項を求めよ.
(3)自然数$n$に対し,$A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right)$とおく.$p_n+s_n$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第1問
以下の問に答えよ.

(1)以下の条件 (ア),(イ) を満たす正の整数は,小さい順に並べると,等差数列になる.この数列の初項と公差を求めよ.

\mon[(ア)] $13$で割ると余りが$2$となる.
\mon[(イ)] $11$で割ると商が奇数,余りが$3$となる.

(2)正六角形$\mathrm{ABCDEF}$の辺$\mathrm{CD}$の中点を$\mathrm{M}$,$\mathrm{CE}$と$\mathrm{AM}$の交点を$\mathrm{N}$とする.このとき,$\triangle \mathrm{NEA}$の面積は$\triangle \mathrm{NCM}$の面積の何倍となるか.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第3問
媒介変数$t \ (0 < t \leqq \pi)$を用いて
\[ \left\{
\begin{array}{l}
x=\sin t \\
\displaystyle y=\frac{\sqrt{3}}{2} \sin 2t
\end{array}
\right. \]
と表される$xy$平面上の曲線を$C_1$,
\[ \left\{
\begin{array}{l}
\displaystyle x=\cos \theta \sin t-\frac{\sqrt{3}}{2} \sin \theta \sin 2t \\ \\
\displaystyle y=\sin \theta \sin t+\frac{\sqrt{3}}{2} \cos \theta \sin 2t
\end{array}
\right. \]
と表される曲線を$C_2$とする.ここで,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,以下の問に答えよ.

(1)$xy$平面上に$C_1$の概形を描け.
(2)直線$y=-\sqrt{3}x+k$が,$C_1$と少なくとも1点を共有するための実数$k$の条件を求めよ.
(3)直線$y=(\tan \theta)x+l$が,$C_2$と少なくとも1点を共有するための実数$l$の条件を求めよ.
(4)$C_1$が囲む領域の面積を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の$k$倍($k \geqq 1$)となる$c$の値を求めよ.
(2)楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.楕円$E^\prime$上のすべての点が楕円$E$の周上または外部にあるための,$c$の条件を求めよ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。