タグ「条件」の検索結果

40ページ目:全636問中391問~400問を表示)
北海道大学 国立 北海道大学 2012年 第1問
$k$は実数,$a,\ b,\ c,\ d$は$ad-bc=1$を満たす実数とする.行列$A=\left(
\begin{array}{cc}
a & b \\
c & d
\end{array}
\right)$の表す移動は以下の$3$条件を満たすとする.\\
\quad (イ)\ 直線$y=x$上の点は直線$y=x$上の点に移る.\\
\quad (ロ)\ 直線$y=-x$上の点は直線$y=-x$上の点に移る.\\
\quad (ハ)\ $x$軸上の点は直線$y=kx$上の点に移る.

(1)$k$のとりうる値の範囲を求めよ.
(2)$A$を$k$で表せ.
北海道大学 国立 北海道大学 2012年 第4問
実数$a,\ b$に対して,$f(x)=x^2-2ax+b,\ g(x)=x^2-2bx+a$とおく.

(1)$a \neq b$のとき,$f(c)=g(c)$を満たす実数$c$を求めよ.
(2)(1)で求めた$c$について,$a,\ b$が条件$a<c<b$を満たすとする.このとき,連立不等式
\[ f(x)<0 \quad \text{かつ} \quad g(x)<0 \]
が解をもつための必要十分条件を$a,\ b$を用いて表せ.
(3)一般に$a<b$のとき,連立不等式
\[ f(x)<0 \quad \text{かつ} \quad g(x)<0 \]
が解をもつための必要十分条件を求め,その条件を満たす点$(a,\ b)$の範囲を$ab$平面上に図示せよ.
埼玉大学 国立 埼玉大学 2012年 第1問
実数$t$に対し,$xy$平面において$2$つの位置ベクトル
\[ \overrightarrow{\mathrm{OA}} = \left(\strut \frac{t}{2}+1,\ \frac{t}{2} \right),\ \overrightarrow{\mathrm{OB}} = \left(\strut t,\ \frac{t^2}{2} \right) \]
を考える.

(1)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行である.$\rfloor$
(2)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行であり,かつ$t>1$である.
埼玉大学 国立 埼玉大学 2012年 第1問
実数$t$に対し,$xy$平面において$2$つの位置ベクトル
\[ \overrightarrow{\mathrm{OA}} = \left(\strut \frac{t}{2}+1,\ \frac{t}{2} \right),\ \overrightarrow{\mathrm{OB}} = \left(\strut t,\ \frac{t^2}{2} \right) \]
を考える.

(1)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行である.$\rfloor$
(2)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行であり,かつ$t>1$である.
埼玉大学 国立 埼玉大学 2012年 第1問
座標平面上の点$\mathrm{P}(x,\ y)$の座標の値$x$と$y$がともに整数であるとき,点$\mathrm{P}$を平面上の格子点と呼ぶ.このとき下記の設問に答えなさい.

(1)不等式$|x|+|y|<3$の表す領域$A$を図示しなさい.また,領域$A$内の格子点の個数を求めなさい.
(2)不等式$x^2+y \leqq 2$の表す領域$B$を図示しなさい.また,領域$B$内の格子点の個数を求めなさい.
(3)$2$つの不等式$x^2 \leqq a^2,\ y^2 \leqq a^2$の表す領域を$C$とする.領域$A$内の格子点全体から領域$B$内のすべての格子点を除いた集合を$D$とする.領域$C$と集合$D$との共通部分が空集合となる$a$の条件を求めなさい.
千葉大学 国立 千葉大学 2012年 第1問
$a$を実数の定数とする.放物線$y=x^2-ax+a$が$x$軸の
\[ 1 \leqq x \leqq 2 \quad \text{または} \quad 3 \leqq x \leqq 4 \]
を満たす部分と$2$つの異なる共有点を持つための$a$の条件を求めよ.
信州大学 国立 信州大学 2012年 第1問
次の条件によって定められる数列$\{a_n\}$について,以下の問に答えよ.
\[ a_1 = \frac{1}{2}, \quad a_{n+1} = \frac{8a_n-1}{25a_n-2} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3,\ a_4,\ a_5$を求めよ.
(2)(1)の結果に基づいて,一般項$a_n$を推測せよ.また,その推測が正しいことを証明せよ.
信州大学 国立 信州大学 2012年 第4問
$xy$平面上の点$(a,\ b)$から曲線$y=x^3-2x$に接線をひく.点$(a,\ b)$からの接線が3本ひけるときの$a,\ b$についての条件を求め,点$(a,\ b)$の存在する領域を図示せよ.
信州大学 国立 信州大学 2012年 第2問
次の$3$条件をすべてみたす$xy$平面上の円$C$が存在するような実数$t$を求めよ.

(i) 円$C$の半径は$3$である.
(ii) 円$C$は$x$軸に接する.
(iii) 点$\mathrm{P}(t,\ t^2)$は円$C$上にあり,点$\mathrm{P}$における円$C$の接線の方程式は$y=2tx-t^2$である.
東北大学 国立 東北大学 2012年 第4問
平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b}$が
\[ |\overrightarrow{a}| = |\overrightarrow{b}| =1,\quad \overrightarrow{a}\cdot \overrightarrow{b}=-\frac{1}{2} \]
を満たすとする.ただし,記号$\overrightarrow{a} \cdot \overrightarrow{b}$はベクトル$\overrightarrow{a}$と$\overrightarrow{b}$の内積を表す.以下の問いに答えよ.

(1)実数$p,\ q$に対して,$\overrightarrow{c} = p\overrightarrow{a}+q\overrightarrow{b}$とおく.このとき,次の条件
\[ |\overrightarrow{c}|=1,\quad \overrightarrow{a}\cdot \overrightarrow{c}=0,\quad p>0 \]
を満たす実数$p,\ q$を求めよ.
(2)平面上のベクトル$\overrightarrow{x}$が
\[ -1 \leqq \overrightarrow{a} \cdot \overrightarrow{x} \leqq 1 , \quad 1 \leqq \overrightarrow{b} \cdot \overrightarrow{x} \leqq 2 \]
を満たすとき,$|\overrightarrow{x}|$のとりうる値の範囲を求めよ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。