タグ「条件」の検索結果

38ページ目:全636問中371問~380問を表示)
中京大学 私立 中京大学 2013年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c$が$3$点$(-3,\ -15)$,$(0,\ -24)$,$(3,\ 21)$を通るとき,
\[ a=[ア],\quad b=[イ],\quad c=-[ウ][エ] \]
であり,この放物線と$x$軸との交点は$(-[オ],\ 0)$,$([カ],\ 0)$である.
(2)点$\mathrm{O}$を$\triangle \mathrm{ABC}$の内心とする.$\angle \mathrm{BAC}={60}^\circ$,$\angle \mathrm{ABO}={35}^\circ$のとき,
\[ \angle \mathrm{ACO}={[キ][ク]}^\circ,\quad \angle \mathrm{BOC}={[ケ][コ][サ]}^\circ \]
である.
(3)関数$\displaystyle y=\frac{1}{3} {\left( \frac{1}{8} \right)}^x-2 {\left( \frac{1}{4} \right)}^x+3 {\left( \frac{1}{2} \right)}^x+1 (x>-2)$は


$x=[シ]$で最大値$\displaystyle \frac{[ス]}{[セ]}$


をとり,

$x=-\log_2 [ソ]$で最小値$[タ]$

をとる.
(4)条件$a_1=0$,$\displaystyle a_n=a_{n-1}+\frac{n-1}{2013} (n=2,\ 3,\ 4,\ \cdots)$によって定められる数列$\{a_n\}$において,$a_n \geqq 1$を満たす最小の$n$は$[チ][ツ]$であり,
\[ a_{[チ][ツ]}=\frac{[テ][ト][ナ]}{[ニ][ヌ][ネ]} \]
である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2013年 第4問
実数$x,\ y$が条件:$x^2+2xy+9y^2=6$を満たすとき,次の問に答えよ.

(1)$x+3y$のとり得る値の範囲を求めよ.
(2)$z=(x-3y)^2+2(x+3y)$の最大値と最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第4問
以下の問いに答えよ.

(1)$a,\ c$を実数の定数とする.$a>0$のとき,方程式$2x^3-3ax^2=c$の相異なる実数解の個数を求めよ.
(2)$3$次関数$y=x^3-3x$のグラフを$G$とする.$x$座標が正である座標平面上の点$\mathrm{P}(a,\ b)$を通る$G$の接線が$3$本存在するための,$a,\ b$の条件を求めよ.
愛知県立大学 公立 愛知県立大学 2013年 第4問
$f=(x \quad y) \left( \begin{array}{cc}
a & b \\
c & a
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)$とする.このとき,以下の問いに答えよ.ただし,$a$,$b$,$c$,$x$,$y$は実数とする.

(1)次の等式を満たす$d,\ e$を$a,\ b,\ c$を用いて表せ.
\[ \left( \begin{array}{cc}
a & b \\
c & a
\end{array} \right)=\left( \begin{array}{cc}
a & d \\
d & a
\end{array} \right)+\left( \begin{array}{cc}
0 & e \\
-e & 0
\end{array} \right) \]
(2)$b=c=0$のとき,$x=y=0$を除くすべての$x,\ y$に対して$f>0$となる$a$の条件を求めよ.
(3)$P=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.このとき,次の等式を満たす$z$,$w$,$\theta$を求めよ.ただし,$b \neq 0$とする.
\[ P^{-1} \left( \begin{array}{cc}
a & b \\
b & a
\end{array} \right) P=\left( \begin{array}{cc}
z & 0 \\
0 & w
\end{array} \right) \]
(4)(1)と(3)の結果を利用して,$x=y=0$を除くすべての$x,\ y$に対して$f>0$となる$a$の条件を$b,\ c$を用いて求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第3問
四面体の$4$つの頂点を$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$とし,空間のある点$\mathrm{P}$に関するそれぞれの位置ベクトルを$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$,$\overrightarrow{a_4}$とする.いま$\triangle \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_3 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$を順に$\mathrm{T}_1$,$\mathrm{T}_2$,$\mathrm{T}_3$,$\mathrm{T}_4$で表しその重心をそれぞれ$\mathrm{G}_1$,$\mathrm{G}_2$,$\mathrm{G}_3$,$\mathrm{G}_4$とする.

(1)点$\mathrm{H}$を$\displaystyle \overrightarrow{\mathrm{PH}}=\frac{\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+\overrightarrow{a_4}}{4}$を満たす点とすると,$4$つの直線$\mathrm{A}_i \mathrm{G}_i (i=1,\ 2,\ 3,\ 4)$は$\mathrm{H}$で交わることを示せ.
(2)「直線$\mathrm{A}_i \mathrm{H}$は$\mathrm{T}_i$を含む平面に直交する($i=1,\ 2,\ 3,\ 4$)」という条件が成り立つと仮定する.このとき$\mathrm{P}$として$\mathrm{H}$を選べば,$\overrightarrow{a_j}$と$\overrightarrow{a_k}$の内積$\overrightarrow{a_j} \cdot \overrightarrow{a_k} (j,\ k=1,\ 2,\ 3,\ 4)$の値は$j \neq k$を満たすどの$j,\ k$に対しても同じであることを示せ.
(3)(2)の条件が成り立てば,四面体$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4$は正四面体であることを示せ.
宮城大学 公立 宮城大学 2013年 第3問
次の空欄$[ナ]$から$[ヘ]$にあてはまる数や式を書きなさい.

ゆがんだサイコロがあり,各々の目の出る確率は下記の確率分布表の通りである.

確率分布表 \quad
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
目 & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\ \hline
確率 & $\displaystyle\frac{1}{9}$ & $\displaystyle\frac{4}{45}$ & $p$ & $q$ & $\displaystyle\frac{1}{35}$ & $r$ \\ \hline
\end{tabular}

また,このサイコロを$6$回投げたとき,次のような$2$つのデータ$(ⅰ)$,$(ⅱ)$が残った.
データ$(ⅰ) \cdots 4$回目に投げたとき$2$度目の$3$の目になる確率が$\displaystyle \frac{4}{27}$であった.
データ$(ⅱ) \cdots$出る目の期待値が$\displaystyle \frac{1153}{315}$であった.
このとき,以下の問いに答えなさい.ただし,$\displaystyle \frac{1}{35}<\frac{4}{45}<\frac{1}{9}<q<r<p<\frac{2}{3}$とする.
まず,確率分布表から,$p+q+r=[ナ] \cdots\cdots ①$である.
次に,データ$(ⅰ)$は$3$の目が$3$回目までに既に$1$回だけ出ていることを示すから,
\[ [ニ]=\frac{4}{27} \]
となる.
これより,次の$2$次方程式が得られる.
\[ [ヌ]=0 \]
条件より,$\displaystyle p<\frac{2}{3}$だから,$p=[ネ]$である.すると$①$から,
\[ q+r=[ノ] \cdots\cdots② \]
となる.
データ$(ⅱ)$から,期待値の式を$p,\ q,\ r$を用いて表せば,
\[ [ハ]=\frac{1153}{315} \]
である.
ゆえに,$p=[ネ]$を適用して,
\[ 2q+3r=[ヒ] \cdots\cdots③ \]
となる.$②$と$③$を連立して,$q=[フ]$,$r=[ヘ]$を得る.
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
$xy$平面上の$3$点$\mathrm{A}(a,\ b)$,$\mathrm{B}(-b,\ a)$,$\mathrm{C}(a^2-b^2,\ 4ab)$を考える.ただし,$a,\ b$はそれぞれ$a>0$,$b>0$,$a+b=1$を満たす任意の実数である.次の問いに答えよ.

(1)$a,\ b$が条件を満たしながら動くとき,点$\mathrm{C}$が描く図形を図で示せ.
(2)$\angle \mathrm{ACB}=\theta$とおくとき,$\theta$を最小にする$a$の値を求めよ.
(3)三角形$\mathrm{ABC}$の面積を最大にする$a$の値を求めよ.
三重県立看護大学 公立 三重県立看護大学 2013年 第4問
$a>0$のとき,曲線$y=|x^2-3x|$と直線$y=x+a$について,次の問いに答えなさい.

(1)曲線と直線を図示し,曲線と直線の共有点が$2$点となるように$a$の条件を求めなさい.
(2)$a=2$のとき,曲線と直線によって囲まれた面積を計算しなさい.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第3問
座標平面上において,原点を中心とする半径$1$の円に,放物線$\displaystyle C:y=-\frac{p}{2}x^2+q (p>0,\ q>0)$が異なる$2$点で接しているとする.以下の問いに答えよ.

(1)$p,\ q$の満たす関係式および$p,\ q$の取りうる範囲を求めよ.
(2)$x$軸と$C$で囲まれた図形(ただし,$y \geqq 0$)の面積$S$を$p$を用いて表せ.
(3)$(1)$の条件の下で$p$が動くとき,$S$の最小値を求めよ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。