タグ「条件」の検索結果

2ページ目:全636問中11問~20問を表示)
名古屋大学 国立 名古屋大学 2016年 第1問
曲線$y=x^2$上に$2$点$\mathrm{A}(-2,\ 4)$,$\mathrm{B}(b,\ b^2)$をとる.ただし$b>-2$とする.このとき,次の条件を満たす$b$の範囲を求めよ.


\mon[条件:] $y=x^2$上の点$\mathrm{T}(t,\ t^2) (-2<t<b)$で,$\angle \mathrm{ATB}$が直角になるものが存在する.
東京大学 国立 東京大学 2016年 第6問
座標空間内を,長さ$2$の線分$\mathrm{AB}$が次の$2$条件$(ⅰ)$,$(ⅱ)$をみたしながら動く.

$(ⅰ)$ 点$\mathrm{A}$は平面$z=0$上にある.
$(ⅱ)$ 点$\mathrm{C}(0,\ 0,\ 1)$が線分$\mathrm{AB}$上にある.

このとき,線分$\mathrm{AB}$が通過することのできる範囲を$K$とする.$K$と不等式$z \geqq 1$の表す範囲との共通部分の体積を求めよ.
北海道大学 国立 北海道大学 2016年 第5問
空間の$2$点$\mathrm{A}(0,\ 0,\ 2)$,$\mathrm{B}(0,\ 1,\ 3)$を通る直線を$\ell$とし,$2$点$\mathrm{C}(1,\ 0,\ 0)$,$\mathrm{D}(1,\ 0,\ 1)$を通る直線を$m$とする.$a$を定数として,$\ell$上にも$m$上にもない点$\mathrm{P}(s,\ t,\ a)$を考える.

(1)$\mathrm{P}$から$\ell$に下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$から$m$に下ろした垂線と$m$の交点を$\mathrm{R}$とする.$\mathrm{Q}$,$\mathrm{R}$の座標をそれぞれ$s,\ t,\ a$を用いて表せ.
(2)$\mathrm{P}$を中心とし,$\ell$と$m$がともに接するような球面が存在するための条件を$s,\ t,\ a$の関係式で表せ.
(3)$s,\ t$と定数$a$が$(2)$の条件をみたすとき,平面上の点$(s,\ t)$の軌跡が放物線であることを示し,その焦点と準線を$a$を用いて表せ.
名古屋大学 国立 名古屋大学 2016年 第4問
次の問に答えよ.ただし$2$次方程式の重解は$2$つと数える.

(1)次の条件$(*)$を満たす整数$a,\ b,\ c,\ d,\ e,\ f$の組をすべて求めよ.
\[ (*) \left\{ \begin{array}{l}
\text{$2$次方程式$x^2+ax+b=0$の$2$つの解が$c,\ d$である.} \\
\text{$2$次方程式$x^2+cx+d=0$の$2$つの解が$e,\ f$である.} \\
\text{$2$次方程式$x^2+ex+f=0$の$2$つの解が$a,\ b$である.}
\end{array} \right. \]
(2)$2$つの数列$\{a_n\},\ \{b_n\}$は,次の条件$(**)$を満たすとする.

\mon[$(**)$] すべての正の整数$n$について,$a_n,\ b_n$は整数であり,$2$次方程式$x^2+a_nx+b_n=0$の$2$つの解が$a_{n+1},\ b_{n+1}$である.

このとき,

(i) 正の整数$m$で,$|b_m|=|b_{m+1|}=|b_{m+2|}=\cdots$となるものが存在することを示せ.
(ii) 条件$(**)$を満たす数列$\{a_n\},\ \{b_n\}$の組をすべて求めよ.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
新潟大学 国立 新潟大学 2016年 第1問
整式$P(x)=x^4+x^3+x-1$について,次の問いに答えよ.

(1)$i$を虚数単位とするとき,$P(i)$,$P(-i)$の値を求めよ.
(2)方程式$P(x)=0$の実数解を求めよ.
(3)$Q(x)$を$3$次以下の整式とする.次の条件

$Q(1)=P(1),\quad Q(-1)=P(-1),$
$Q(2)=P(2),\quad Q(-2)=P(-2)$

をすべて満たす$Q(x)$を求めよ.
新潟大学 国立 新潟大学 2016年 第1問
整式$P(x)=x^4+x^3+x-1$について,次の問いに答えよ.

(1)$i$を虚数単位とするとき,$P(i)$,$P(-i)$の値を求めよ.
(2)方程式$P(x)=0$の実数解を求めよ.
(3)$Q(x)$を$3$次以下の整式とする.次の条件

$Q(1)=P(1),\quad Q(-1)=P(-1),$
$Q(2)=P(2),\quad Q(-2)=P(-2)$

をすべて満たす$Q(x)$を求めよ.
静岡大学 国立 静岡大学 2016年 第2問
$a,\ b$を実数とする.$3$次関数$f(x)=2x^3-3(a+1)x^2+6ax+b$について次の各問に答えよ.

(1)関数$f(x)$が極値をもつための$a$の条件を求めよ.
(2)方程式$f(x)=0$が相異なる$3$つの正の実数解をもつための必要十分条件を$a,\ b$を用いて表し,この条件を満たす点$(a,\ b)$の全体を座標平面上に図示せよ.
(3)方程式$f(x)=0$が$2$つの相異なる正の実数解と$1$つの負の実数解をもつための必要十分条件を$a,\ b$を用いて表し,この条件を満たす点$(a,\ b)$の全体を座標平面上に図示せよ.
東北大学 国立 東北大学 2016年 第1問
平面上で原点$\mathrm{O}$と$3$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ 2)$,$\mathrm{C}(-1,\ 1)$を考える.実数$s,\ t$に対し,点$\mathrm{P}$を
\[ \overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}} \]
により定める.以下の問いに答えよ.

(1)$s,\ t$が条件
\[ -1 \leqq s \leqq 1,\quad -1 \leqq t \leqq 1,\quad -1 \leqq s+t \leqq 1 \]
を満たすとき,点$\mathrm{P}(x,\ y)$の存在する範囲$D$を図示せよ.
(2)点$\mathrm{P}$が$(1)$で求めた範囲$D$を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値を求め,そのときの$\mathrm{P}$の座標を求めよ.
岐阜大学 国立 岐阜大学 2016年 第2問
$\alpha,\ \beta,\ a,\ b,\ c,\ d$を実数とする.以下の問に答えよ.

(1)「すべての実数$x$について$x^2+\alpha x+\beta>0$である」が成り立つための$\alpha,\ \beta$に関する条件を求めよ.
(2)「すべての実数$y$について$ay+b<0$である」が成り立つための$a,\ b$に関する条件を求めよ.
(3)「すべての実数$x,\ y$について$x^2+4xy+4y^2+5x+cy+d>0$である」が成り立つための$c,\ d$に関する条件を求めよ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。