タグ「条件」の検索結果

17ページ目:全636問中161問~170問を表示)
東京理科大学 私立 東京理科大学 2015年 第5問
$n$を自然数とする.$k=1,\ 2,\ 3$に対して,次の条件$\mathrm{P}_k$を考える.

$\mathrm{P}_k: \quad k \leqq r \leqq n-k$を満たすすべての自然数$r$に対して,$\comb{n}{r}$は偶数である.

(1)$2 \leqq n \leqq 20$,$k=1$とする.$\mathrm{P}_1$を満たす$n$は全部で$[ア]$個ある.このうち,最大のものは$[イ][ウ]$である.
(2)$4 \leqq n \leqq 1000$,$k=2$とする.$\mathrm{P}_2$を満たす$n$は全部で$[エ][オ]$個ある.このうち,最大のものは$[カ][キ][ク]$である.
(3)$6 \leqq n \leqq {10}^{16}$,$k=3$とする.$\mathrm{P}_3$を満たす$n$は全部で$[ケ][コ][サ]$個ある.
(注意:$0.3010<\log_{10}2<0.3011$)
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
広島工業大学 私立 広島工業大学 2015年 第8問
$1$回の試行において,事象$A$が起こる確率を$3-5p$とする.次の問いに答えよ.

(1)$p$の条件を求めよ.
(2)$2$回の試行において,事象$A$が$1$回だけ起こる確率$f(p)$を求めよ.
(3)$f(p)$の最大値,およびそのときの$p$の値を求めよ.
北里大学 私立 北里大学 2015年 第5問
$\{a_n\}$を数列とし,$l$を数直線とする.各自然数$n$に対して,座標が$a_n$であるような$l$上の点を$\mathrm{P}_n$とする.次の$2$条件が成り立っているとする.

(i) $a_1=0$,$a_2=1$である.
(ii) 点$\mathrm{P}_{n+2}$は$2$点$\mathrm{P}_n$,$\mathrm{P}_{n+1}$を結ぶ線分の中点である($n=1,\ 2,\ 3,\ \cdots$).

以下の問に答えよ.

(1)$a_3$の値は$[シ]$,$a_4$の値は$[ス]$である.
(2)$b_n=a_{n+1}-a_n$とおくとき,数列$\{b_n\}$の一般項は$b_n=[セ]$であり,数列$\{a_n\}$の一般項は$a_n=[ソ]$である.
早稲田大学 私立 早稲田大学 2015年 第1問
次の各問に答えよ.

(1)整式$P(x)$を$(x-1)(x-4)$で割ると余りは$43x-35$であり,$(x-2)(x-3)$で割ると余りは$39x-55$であるという.このとき,$P(x)$を
\[ (x-1)(x-2)(x-3)(x-4) \]
で割ったときの余りを求めよ.
(2)座標平面に$4$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$,$\mathrm{C}(-1,\ 1)$,$\mathrm{D}(-1,\ -1)$がある.実数$x$が$0 \leqq x \leqq 1$の範囲にあるとき,$2$点$\mathrm{P}(x,\ 0)$,$\mathrm{Q}(-x,\ 0)$を考える.このとき,$5$本の線分の長さの和
\[ \mathrm{AP}+\mathrm{BP}+\mathrm{PQ}+\mathrm{CQ}+\mathrm{DQ} \]
が最小となるような$x$の値を求めよ.ただし,$x=0$のときは$\mathrm{PQ}=0$とする.
(3)$1$から$10$までの自然数からなる集合$\{1,\ 2,\ \cdots,\ 10\}$の中から異なる$3$つの数を選ぶとする.このとき,選んだ数の和が$3$で割り切れる確率を求めよ.
(4)座標平面において楕円$\displaystyle E:\frac{x^2}{a}+y^2=1$を考える.ただし,$a$は$a>0$をみたす定数とする.楕円$E$上の点$\mathrm{A}(0,\ 1)$を中心とする円$C$が,次の$2$つの条件をみたしているとする.

(i) 楕円$E$は円$C$とその内部に含まれ,$E$と$C$は$2$点$\mathrm{P}$,$\mathrm{Q}$で接する.
(ii) $\triangle \mathrm{APQ}$は正三角形である.

このとき,$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)数列$\{a_n\}$は,次の条件$(ⅰ),\ (ⅱ)$を満たす.


(i) $a_1=0,\quad a_n \leqq 0 \quad (n=2,\ 3,\ 4,\ \cdots)$

(ii) $\displaystyle n=\int_{a_n}^{a_{n+1}} \left( x+\frac{1}{2} \right) \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$


$n=2,\ 3,\ 4,\ \cdots$のとき,$a_n=[ア]$である.
(2)$\displaystyle \sum_{k=1}^7 \log_2 \cos \frac{k\pi}{16}=[イ]$
(3)実数$x,\ y$が,$|x|+|y|=1$を満たしているとき,
\[ |7x-3y|+|5x-11y| \]
の最大値は$[ウ]$である.
(4)関数$f(x)=1-2 |x|$を考える.次の条件$(ⅰ),\ (ⅱ)$を満たす実数$a$は全部で$[エ]$個ある.

(i) $f(a) \neq a$
(ii) $f(f(f(a)))=a$
学習院大学 私立 学習院大学 2015年 第3問
次の条件を満たすような実数$a$の範囲を求めよ.

(条件):どんな実数$x$に対しても
\[ x^2-3x+2>0 \quad \text{または} \quad x^2+ax+1>0 \]
が成立する.
金沢工業大学 私立 金沢工業大学 2015年 第5問
次の条件によって定められる関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を考える.
\[ f_1(x)=(3x+5)e^{2x},\quad f_{n+1}(x)={f_n}^{\prime}(x) \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$f_2(x)=([ア]x+[イウ])e^{2x}$である.
(2)$f_n(x)=(a_nx+b_n)e^{2x}$($a_n,\ b_n$は定数)とおくと,
\[ a_1=[エ],\quad b_1=[オ],\quad \left\{ \begin{array}{l}
a_{n+1}=[カ]a_n \\
b_{n+1}=a_n+[キ]b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
(3)$a_n=[ク] \cdot {[ケ]}^{n-1} (n=1,\ 2,\ 3,\ \cdots)$である.
(4)$\displaystyle c_n=\frac{b_n}{2^n}$とおくと,$\displaystyle c_{n+1}=c_n+\frac{[コ]}{[サ]} (n=1,\ 2,\ 3,\ \cdots)$である.よって,$\displaystyle c_n=\frac{[シ]n+[ス]}{[セ]}$,つまり$b_n={[ソ]}^{n-2}([タ]n+[チ]) (n=1,\ 2,\ 3,\ \cdots)$である.ゆえに
\[ f_n(x)={[ツ]}^{n-2}([テ]x+[ト]n+[ナ])e^{2x} \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
東京理科大学 私立 東京理科大学 2015年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$は次の条件を満たすとする.
\begin{itemize}
楕円$C$は点$\mathrm{A}(0,\ -1)$を通る
楕円$C$の右焦点と直線$x-y+2 \sqrt{2}=0$の距離は$3$である(ただし,楕円の右焦点とは,楕円の$2$つの焦点のうち,$x$座標が正のものをさす.)
\end{itemize}

(1)$a,\ b$の値を求めなさい.
(2)$y$軸上に点$\mathrm{P}(0,\ p)$をとる.点$\mathrm{P}$を通り,次の条件を満たす直線$\ell$が$p$の値によって何本引けるかを調べなさい.
\begin{itemize}
直線$\ell$は楕円$C$と異なる$2$点$\mathrm{M}$,$\mathrm{N}$で交わり,$\mathrm{AM}=\mathrm{AN}$が成り立つ.
\end{itemize}
大阪歯科大学 私立 大阪歯科大学 2015年 第2問
$a$が実数であるとき,$f(x)=x^2-ax+a-1$の$0 \leqq x \leqq 1$における最大値が$0$であるという.

(1)$a=0$のとき,このことが成り立つことを示せ.
(2)上の条件が成り立つための$a$の値をすべて求めよ.
(3)$a \leqq 0$のとき,$\displaystyle \int_a^{a+1} f(x) \, dx$の最大値とそのときの$a$の値を求めよ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。