タグ「条件」の検索結果

16ページ目:全636問中151問~160問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ある村では公共サービス$\mathrm{X}$と$\mathrm{Y}$を提供している.提供された$\mathrm{X}$の量を$x$,$\mathrm{Y}$の量を$y$で表わす.技術的条件や予算の制約によって$(x,\ y)$が実現するのは$x,\ y$がつぎの不等式をみたすときである.
\[ \begin{array}{l}
x+y \leqq 200 \\
x+5y \leqq 790 \phantom{\frac{[ ]}{2}} \\
3x+4y \leqq 720 \phantom{\frac{[ ]}{2}} \\
x,\ y \geqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \]
$(x,\ y)$が実現する領域は$5$角形であり,その$5$頂点は$(0,\ 0)$,$(200,\ 0)$,$(0,\ 158)$および$\mathrm{A}([$53$][$54$][$55$],\ [$56$][$57$][$58$])$,$\mathrm{B}(80,\ [$59$][$60$][$61$])$である.

現在,一般の村民は$xy$が最大になることを望んでおり,一方,村の有力者一族は$x+10y$が最大になることを望んでいる.村長は$x$と$y$を自由に選ぶことができるが,両方の意向を尊重して
\[ \alpha xy+(1-\alpha)(x+10y) \quad (0<\alpha<1) \]
を最大化する方針をとった.
仮に,$\displaystyle \alpha=\frac{1}{3}$ならば村長の選択は$(x,\ y)=([$62$][$63$],\ [$64$][$65$][$66$])$となる.
村長は最大化のために選択すべき点を線分$\mathrm{AB}$上にとることにした.しかし,予算上端点$\mathrm{A}$も$\mathrm{B}$も選択することが認められないことがわかった.すると,$\alpha$は
\[ \frac{[$67$][$68$]}{[$69$][$70$][$71$]}<\alpha<\frac{[$72$][$73$]}{133} \]
の範囲に限定される.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
中央大学 私立 中央大学 2015年 第1問
以下の設問に答えよ.

(1)次の条件によって定められる数列$\{a_n\}$の一般項を求めよ.
\begin{itemize}
$a_1=1$ \qquad\qquad $\bullet a_{n+1}=3a_n+8,\quad n=1,\ 2,\ \cdots$
\end{itemize}
(2)次の条件によって定められる数列$\{b_n\}$の一般項を求めよ.
\begin{itemize}
$b_1=1$ \qquad\qquad $\bullet b_{n+1}=3b_n+5^n,\quad n=1,\ 2,\ \cdots$
\end{itemize}
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
上智大学 私立 上智大学 2015年 第2問
座標平面上で$2$つのベクトル
\[ \overrightarrow{p}=(p,\ 0),\quad \overrightarrow{q}=(q,\ 0) \]
を考える.ただし,$0<p<1$,$q>1$とする.$\overrightarrow{x}$を単位ベクトルとして,以下の問に答えよ.

(1)任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{p}$は直交しないことを示せ.
(2)$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,$|\overrightarrow{x}-\overrightarrow{q}|$を$q$を用いて表せ.
(3)$\overrightarrow{p},\ \overrightarrow{q}$が次の条件をみたすとする.
条件:任意の$\overrightarrow{x}$について$|\overrightarrow{x}-\overrightarrow{p}|:|\overrightarrow{x}-\overrightarrow{q}|=1:2$となる.

(i) $p$および$q$の値を求めよ.
(ii) $\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,原点を始点として$\overrightarrow{x}$,$\overrightarrow{p}$,$\overrightarrow{q}$を図示せよ.
(iii) 実数$a$に対して,
\[ \overrightarrow{s}=\frac{\overrightarrow{x}-\overrightarrow{p}}{|\overrightarrow{x}-\overrightarrow{p}|^3}-a \frac{\overrightarrow{x}-\overrightarrow{q}}{|\overrightarrow{x}-\overrightarrow{q}|^3} \]
とおく.任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{s}$が平行となるときの$a$の値を求めよ.
上智大学 私立 上智大学 2015年 第3問
実数からなる集合$A,\ B,\ C$を以下のように定義する.

$\displaystyle A=\left\{ x \ \biggl| \ \sin \frac{\pi}{2}x>-\frac{1}{7}x \right\}$

$B=\{x \ | \ 0<x<b\}$
$C=\{x \ | \ x \geqq c\}$

ただし,$b,\ c$は正の実数とする.

(1)$-1 [え] A$である.また,$5 [お] A$である.
\begin{screen}
$[え]$,$[お]$の選択肢:
\[ \mathrm{(a)} \ \in \quad \mathrm{(b)} \ \notin \quad \mathrm{(c)} \ \ni \quad \mathrm{(d)} \ \notni \quad \mathrm{(e)} \ = \quad \mathrm{(f)} \ \subset \quad \mathrm{(g)} \ \supset \]
\end{screen}
(2)$B \cap C$が空集合であるための必要十分条件は$[か]$である.
\begin{screen}
$[か]$の選択肢:

\begin{tabular}{llll}
$\mathrm{(a)} \ b=c$ \phantom{AA} & $\mathrm{(b)} \ b<c$ \phantom{AA} & $\mathrm{(c)} \ b \leqq c$ \phantom{AA} & $\mathrm{(d)} \ b>c$ \phantom{AA} \\
$\mathrm{(e)} \ b \geqq c$ & $\mathrm{(f)} \ b \leqq 1$ & $\mathrm{(g)} \ b \leqq 1 \text{かつ} c \geqq 1$ &
\end{tabular}

\end{screen}
(3)$A \supset B$となる$b$のうち,整数で最大のものは$[タ]$である.また,$A \supset C$となる$c$のうち,整数で最小のものは$[チ]$である.
(4)$S$は実数からなる集合とする.「集合$S$が連結である」とは,「$S$のどの$2$つの要素$x,\ y$に対しても,

条件:実数$z$が$x<z<y$を満たすならば$z \in S$

が成り立つ」ことである.
$A \cap B$が連結であるような$b$のうち,整数で最大のものは$[ツ]$である.また,$A \cap C$が連結であるような$c$のうち,整数で最小のものは$[テ]$である.
早稲田大学 私立 早稲田大学 2015年 第3問
整数$n$に対し,整数$f(n)$が次の条件$(ⅰ),\ (ⅱ),\ (ⅲ)$を満たすように定義されている.

(i) $f(2015)=0$
(ii) すべての整数$n$に対して,$f(f(n)+4)=n$
(iii) すべての整数$n$に対して,$f(2n)<f(2n+2)$

次の設問に答えよ.

(1)$f(4)$を求めよ.
(2)整数$n$に対し,$f(4n+1)$を求めよ.
上智大学 私立 上智大学 2015年 第2問
$N$を$2$以上の整数とする.整数$a,\ b$に対し,演算$\oplus$を
\[ a \oplus b=\biggl( (a+b) \text{を}N \text{で割ったときの余り} \biggr) \]
と定める.例えば,$N=2$のとき,
\[ 0 \oplus 0=0,\quad 0 \oplus 1=1,\quad 1 \oplus 1=0,\quad 1 \oplus 3=0 \]
である.

(1)次の条件によって定められる数列$\{a_n\}$を考える.
\[ a_1=1,\quad a_{n+1}=a_n \oplus (n+1) \quad (n=1,\ 2,\ 3,\ \cdots) \]

(i) $N=4$のとき,$a_3=[ヌ]$である.

(ii) $N \geqq 4$とする.

$N$が偶数のとき,$\displaystyle a_{N+1}=\frac{[ネ]}{[ノ]}N+[ハ]$,

$N$が奇数のとき,$\displaystyle a_{N+1}=[ヒ]$である.


(iii) $N$が偶数のとき,$\displaystyle a_{N-1}=\frac{[フ]}{[ヘ]}N+[ホ]$,

$N$が奇数のとき,$\displaystyle a_{N-1}=[マ]$である.


(2)$N$を偶数とし,$N=2M$と表す.ただし,$M$は自然数である.次の条件によって定められる数列$\{b_n\}$を考える.
\[ b_1=1,\quad b_{n+1}=b_n \oplus (2n+1) \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_M=0$となる必要十分条件は,$N$が$[ミ]$の倍数となることである.

$N$が$[ミ]$の倍数でない偶数のとき,$\displaystyle b_M=\frac{[ム]}{[メ]}N$である.
上智大学 私立 上智大学 2015年 第2問
赤いカードと青いカードが$10$枚ずつあり,それぞれ$0$から$9$までの数字が$1$つずつ書かれている.これら$20$枚から数枚を選ぶときの選び方に関する次の条件$P$を考える.

$P$:選んだカードのうち,赤いカードに書かれた数字はすべて偶数である.

(1)$P$であるための必要十分条件を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
(2)$P$の否定を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
選択肢:
\mon[$\mathrm{A}$] 選んだカードのうち,青いカードに書かれた数字はすべて奇数である.
\mon[$\mathrm{B}$] 選んだカードのうち,奇数が書かれたカードはすべて青い.
\mon[$\mathrm{C}$] 選んだカードのうち,偶数が書かれたカードはすべて赤い.
\mon[$\mathrm{D}$] 選んだカードのうちに,偶数が書かれた青いカードが存在する.
\mon[$\mathrm{E}$] 選んだカードのうちに,奇数が書かれた赤いカードが存在する.
\mon[$\mathrm{F}$] 選んだカードのうちに,偶数が書かれた青いカードは存在しない.
\mon[$\mathrm{G}$] 選んだカードのうちに,奇数が書かれた赤いカードは存在しない.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章中の$[ア]$から$[ヨ]$までに当てはまる数字$0$~$9$を求めよ.

(1)実数$a$に対し,$2$つの$2$次関数

$f(x)=x^2-2a^2x-a^4-2a^2-8$
$g(x)=-x^2+2(a^2-4)x-3a^4-2a^3-16$

を考える.

(i) すべての実数$x$に対して$g(x)<f(x)$が成り立つための必要十分条件は
\[ a>-[ア] \quad \text{かつ} \quad a \neq [イ] \]
である.
(ii) $g(x)$の最大値は$-[ウ]a^4-[エ]a^3-[オ]a^2$である.
(iii) 次の条件$(*)$を満たす実数$b$がただ$1$つ存在するとする.

$(*)$ \quad 「すべての実数$x$に対して \ $g(x) \leqq b \leqq f(x)$ \ が成り立つ.」

このとき,
\[ a=-[カ] \quad \text{または} \quad a=[キ] \]
であり,$a=-[カ]$のときは$b=-[ク][ケ]$,$a=[キ]$のときは$b=-[コ][サ]$である.

(2)次の条件で定められる数列$\{a_n\}$,$\{b_n\}$を考える.
\[ a_1=1,\quad b_1=-2,\quad \left\{ \begin{array}{lcl}
a_{n+1} &=& 8a_n+b_n \\
b_{n+1} &=& -25a_n-2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき
\[ [シ]a_{n+1}+b_{n+1}=[ス]([シ]a_n+b_n) \]
であるので,
\[ b_n={[セ]}^n-[ソ]a_n \]
である.これにより
\[ \frac{a_{n+1}}{{[タ]}^n}=\frac{a_n}{{[タ]}^{n-1}}+1 \]
となる.したがって
\[ a_n=n \cdot {[チ]}^{n-\mkakko{ツ}} \]
となる.
(3)平面上に,$\triangle \mathrm{ABC}$とその内部の点$\mathrm{O}$をとったとき,

$\mathrm{OA}=1+\sqrt{3}$
$\mathrm{OB}=\sqrt{3}$
$\mathrm{OC}=\sqrt{2}$
$\sqrt{3} \overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$

となっていた.
このとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{-[テ]-\sqrt{[ト]}}{[ナ]}$であるので
\[ \angle \mathrm{AOB}={[ニ][ヌ][ネ]}^\circ \]
である.同様に$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=-[ノ]-\sqrt{[ハ]}$から
\[ \angle \mathrm{AOC}={[ヒ][フ][ヘ]}^\circ \]
である.したがって,
\[ \angle \mathrm{BOC}={[ホ][マ][ミ]}^\circ \]
となる.また,
\[ \sin {[ホ][マ][ミ]}^\circ=\frac{\sqrt{[ム]} \left( [メ]+\sqrt{[モ]} \right)}{4} \]
である.したがって,$\triangle \mathrm{ABC}$の面積は$\displaystyle [ヤ]+\frac{[ユ] \sqrt{[ヨ]}}{2}$である.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。