タグ「本数」の検索結果

2ページ目:全20問中11問~20問を表示)
島根大学 国立 島根大学 2013年 第1問
$3$次関数$f(x)$は$x=1$と$x=3$で極値をとり,曲線$y=f(x)$は点$(0,\ 1)$と点$(1,\ 3)$を通るとする.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)曲線$y=f(x)$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(3)曲線$y=f(x)$に接し,原点$(0,\ 0)$を通る直線の本数を求めよ.
高崎経済大学 公立 高崎経済大学 2013年 第5問
$2$つの円$C_1:x^2+y^2=16$と$C_2:x^2+(y-8)^2=4$があるとき,以下の各問いに答えよ.

(1)$C_1$と$C_2$の両方に接する直線の本数を答えよ.
(2)$C_1$と$C_2$の両方に接する直線の方程式をすべて求めよ.
(3)$C_1$と$C_2$の両方に接する直線の交点のうち,原点から最も遠い交点の座標を求めよ.
名古屋大学 国立 名古屋大学 2012年 第1問
$a$を正の定数とし,$xy$平面上の曲線$C$の方程式を$y=x^3-a^2x$とする.

(1)$C$上の点A$(t,\ t^3-a^2t)$における$C$の接線を$\ell$とする.$\ell$と$C$で囲まれた図形の面積$S(t)$を求めよ.ただし,$t$は0でないとする.
(2)$b$を実数とする.$C$の接線のうち$xy$平面上の点B$(2a,\ b)$を通るものの本数を求めよ.
(3)$C$の接線のうち点B$(2a,\ b)$を通るものが2本のみの場合を考え,それらの接線を$\ell_1,\ \ell_2$とする.ただし,$\ell_1$と$\ell_2$はどちらも原点$(0,\ 0)$を通らないとする.$\ell_1$と$C$で囲まれた図形の面積を$S_1$とし,$\ell_2$と$C$で囲まれた図形の面積を$S_2$とする.$S_1 \geqq S_2$として,$\displaystyle\frac{S_1}{S_2}$の値を求めよ.
高知大学 国立 高知大学 2012年 第4問
3次関数$f(x)=x^3+ax^2+bx$について次の問いに答えよ.

(1)$f(x)$が$x=\alpha$で極大値を,$x=\beta$で極小値を持ち,$f(\alpha)-f(\beta)=4$とする.

\mon[(i)] $\beta-\alpha$を$a,\ b$の式で表せ.
\mon[(ii)] $a,\ b$の間に成り立つ関係式を求めよ.

(2)曲線$y=f(x)$に点$(0,\ 8)$から引いた接線の本数がちょうど2本あるとする.

\mon[(i)] $x=t$における接線の方程式を求めよ.
\mon[(ii)] $a$の値を求めよ.

(3)(1),(2)がともに成り立つとき,2本の接線をそれぞれ求めよ.
(4)(3)で求めた2本の接線と曲線$y=f(x)$とで囲まれる図形の面積を求めよ.
新潟大学 国立 新潟大学 2012年 第3問
$a$を実数とし,$xy$平面上において,2つの放物線
\[ C:y=x^2,\quad D:x=y^2+a \]
を考える.次の問いに答えよ.

(1)$p,\ q$を実数として,直線$\ell:y=px+q$が$C$に接するとき,$q$を$p$で表せ.
(2)(1)において,直線$\ell$がさらに$D$にも接するとき,$a$を$p$で表せ.
(3)$C$と$D$の両方に接する直線の本数を,$a$の値によって場合分けして求めよ.
津田塾大学 私立 津田塾大学 2012年 第3問
曲線$y=1-x^2$を$C$とする.

(1)$C$上の点$(t,\ 1-t^2)$における法線の方程式を求めよ.
(2)$C$の法線で原点を通るものの本数を求めよ.
(3)点$(a,\ 0)$を通る$C$の法線がただ$1$本であるための$a$の条件を求めよ.
青森公立大学 公立 青森公立大学 2012年 第3問
$x$の3次関数$f(x)=2x^3-3x^2$について,曲線$C_1:y=f(x)$と曲線$C_2:y=f(|x|)$を考える.次の問いに答えよ.

(1)曲線$C_1$のグラフを描け.
(2)$a$を実数とする.曲線$C_1$の接線のなかで点$(0,\ a)$を通る接線の本数を求めよ.
(3)曲線$C_2$のグラフの概形を描け.
(4)$b$は$\displaystyle b>\frac{1}{2}$を満たす実数とする.曲線$C_2$の接線のなかで点$(b,\ 4)$を通る接線の本数を求めよ.
高崎経済大学 公立 高崎経済大学 2012年 第1問
以下の各問に答えよ.

(1)$3$次関数$f(x)=ax^3+bx^2-6$がある.$f^{\prime}(1)=7,\ f^{\prime}(-2)=4$となるように定数$a,\ b$の値を定めよ.
(2)次の計算をせよ.ただし,$i^2=-1$である.$\displaystyle \frac{2-i}{1+2i}$
(3)$(2x^2-1)^6$を展開したとき,$x^4$の項の係数を求めよ.
(4)$20$本のくじがあり,当たりくじの賞金と本数は$1$等$1000$円が$1$本,$2$等$500$円が$2$本,$3$等$300$円が$3$本である.ただし,はずれくじの賞金は$0$円である.いま,この中から$1$本のくじを引くときの賞金の期待値を求めよ.
(5)$x$は実数とする.命題「$x>0 \Longrightarrow |-x|>|x-1|$」の真偽を答えよ.また,偽であるときは反例をあげよ.
(6)初項$1$,公比$9$の等比数列$\{a_n\} \ (n=1,\ 2,\ \cdots)$を考える.不等式
\[ a_1+a_2+\cdots +a_k \leqq 2^{20}-2^{-3} \]
を満たす最大の整数$k$の値を求めよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.
(7)$\sqrt[12]{20000},\ \sqrt[3]{6+4\sqrt{3}},\ \sqrt[2]{4+\sqrt{2}}$の$3$数の大小を比較せよ.
(8)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$2:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{D}$,$2$直線$\mathrm{AD}$,$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
京都薬科大学 私立 京都薬科大学 2011年 第2問
あるジュースにはおまけとして$1$本につき$1$つのキャラクターグッズが付いている.キャラクターグッズは全部で$6$種類あり,現在$2$種類持っているとする.各キャラクターグッズは,同じ割合で封入されているとして,以下の$[ ]$にあてはまる数または式を記入せよ.

(1)今からカウントして,$3$種類目のキャラクターグッズを得るまでに購入するジュースの本数を$X$とする.

(i) $X=1$となる確率は$[ ]$である.
(ii) $X=2$となる確率は$[ ]$である.
(iii) $X=k$となる確率を$P(k)$とするとき,$\displaystyle \sum_{k=1}^n kP(k)=[ ]$となる.

(2)ジュースを$5$本,まとめ買いしたとする.

(i) この$5$本のおまけの中に,少なくとも$1$つは,現在持っていないキャラクターグッズが含まれる確率は$[ ]$である.
(ii) 現在持っていないキャラクターグッズを,ちょうど$1$つだけ得る確率は$[ ]$である.
(iii) 現在持っていないキャラクターグッズ$4$種類を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.$5$つのおまけの中で,$\mathrm{A}$が$2$つ$\mathrm{B}$が$1$つ,残り$2$つはすでに持っているキャラクターグッズが出る確率は$[ ]$である.
\mon[$\tokeishi$] 現在持っていないキャラクターグッズ$2$種類をちょうど$1$つずつだけ(残り$3$つはすでに持っているキャラクターグッズを)得る確率は$[ ]$である.
茨城大学 国立 茨城大学 2010年 第4問
曲線$C:y =(x-3)\sqrt{x} (x>0)$の法線を考える.ただし,曲線$C$上の点$\mathrm{P}$における法線とは,点$\mathrm{P}$を通り,この曲線上の点$\mathrm{P}$における接線に垂直に交わる直線のことである.このとき,以下の各問に答えよ.

(1)関数$y=(x-3)\sqrt{x} (x>0)$の増減,極値を調べて,そのグラフをかけ.
(2)曲線$C$上の点$(t,\ (t-3)\sqrt{t})$における法線の方程式を求めよ.
(3)$a$を正の定数とするとき,点$(a,\ 0)$を通る法線の本数を調べよ.
スポンサーリンク

「本数」とは・・・

 まだこのタグの説明は執筆されていません。