タグ「未満」の検索結果

3ページ目:全28問中21問~30問を表示)
釧路公立大学 公立 釧路公立大学 2012年 第2問
以下の各問に答えよ.

(1)次の式の展開式における$x^3y^3$の項の係数を求めよ.$(x-2y)^6$
(2)アタリくじ$3$枚とハズレくじ$7$枚が入っている箱がある.この箱からくじを$3$枚同時に取り出し,取り出されたアタリくじ$1$枚について$500$円を受け取るゲームがある.このゲームの参加料が何円未満であれば,このゲームに参加することが得であるといえるか求めよ.
(3)$3$辺が$\mathrm{AB}=12$,$\mathrm{BC}=13$,$\mathrm{CA}=5$である$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の接点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{BP}$の長さと内接円の半径を求めよ.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$に数値を入れよ.

(1)$a_1,\ a_2,\ a_3,\ \cdots$を初項が$-15$,公差が整数$d$の等差数列とする.このとき$a_4<0<a_5$ならば,$d=[1]$となり,
\[ \sum_{n=1}^5 (-1)^{n-1}na_n=[2] \]
である.
(2)$1$から$4$までの数字が,$1$つずつ書いてある$4$枚のカードがある.この中から同時に$2$枚を取り出し,大きい方の数字を$a$とし,小さい方の数字を$b$とするとき,$2a-b$を得点とする.このとき,得点の期待値は,$[3]$であり,得点が$[3]$未満となる確率は,$[4]$である.
(3)$0 \leqq x \leqq \pi$かつ$\displaystyle x \neq \frac{\pi}{2}$を満たす$x$について,
\[ 1-\tan^2 x=3 \cos (\pi-x)+\frac{2}{\cos (\pi-x)} \]
を満たすとき,
\[ \cos x=[5],\quad \sin x=[6] \]
である.
西南学院大学 私立 西南学院大学 2011年 第5問
年利率$0.05$,$1$年ごとの複利で借金をする.今年の年度初めに$1000$万円を借りた.$1$年後(今年の年度末)から返済を開始し,毎年,年度末に同じ金額を返済するものとする.このとき,以下の問に答えよ.ただし,$1.05^7=1.407$,$1.05^8=1.477$,$1.05^9=1.551$,$1.05^{10}=1.629$として計算せよ.

(注)複利での借金とは次のようなものである.ある年の年度初めに年利率$r$で$A$円を借りると,$1$年後の借金は$A(1+r)$円になる.ここで$B$円を返すと,$1$年目の年度末の借金残額は$\{A(1+r)-B\}$円になるから,$2$年後の借金は$\{A(1+r)-B\}(1+r)$円になる.

(1)毎年,年度末に$100$万円を返済するとき,$1$年目の年度末の借金残額はいくらになるか.
(2)$10$年目の年度末に返済を完了するためには,毎年,いくらずつ返済すればよいか.ただし,最後の答は,一万円未満を切り捨てて,一万円までの概数で答えよ.
(3)毎年,年度末に$100$万円を返済するとき,借金残額が初めて$500$万円以下となるのは何年目の年度末か.
兵庫県立大学 公立 兵庫県立大学 2011年 第5問
全生徒に対し,英語と数学の試験を実施した.英語の試験で80点以上の生徒の集合をA,数学の試験で80点以上の生徒の集合をBとするとき,次の集合を,記号を用いて表しなさい.

(1)英語または数学が80点未満の生徒の集合
(2)英語と数学が共に80点未満の生徒の集合
(3)英語が80点以上であって数学が80点未満の生徒の集合
北海学園大学 私立 北海学園大学 2010年 第5問
さいころを$4$回投げて,出た目を順に並べて$4$桁の整数を作るとき,次の問いに答えよ.

(1)$4$桁の整数は何個できるか.
(2)これらの整数の中に$5$の倍数は何個あるか.
(3)これらの整数の中に$3333$以上かつ$4444$未満の整数は何個あるか.
北海学園大学 私立 北海学園大学 2010年 第4問
さいころを$4$回投げて,出た目を順に並べて$4$桁の整数を作るとき,次の問いに答えよ.

(1)$4$桁の整数は何個できるか.
(2)これらの整数の中に$5$の倍数は何個あるか.
(3)これらの整数の中に$3333$以上かつ$4444$未満の整数は何個あるか.
大阪市立大学 公立 大阪市立大学 2010年 第3問
$a,\ b$を正の実数とし,座標平面上の放物線$C : y = ax^2 +b$を考える.$t,\ s$は正の実数とし,点P$(t,\ at^2 +b)$における$C$の接線を$\ell_P$,点Q$(s,\ as^2 +b)$における$C$の接線を$\ell_Q$で表す.$\ell_P$は原点を通っているとする.次の問いに答えよ.

(1)$\ell_P$の傾きが1未満となるための必要十分条件を,$a$と$b$を用いて表せ.
(2)$\ell_P$の傾きは1未満とし,$\ell_P$と$x$軸がなす鋭角を$\theta$と表す.Qを$\ell_Q$と$x$軸のなす鋭角が$2\theta$になるようにとるとき,$\ell_Q$の傾きを$a$と$b$を用いて表せ.
(3)$a,\ b$が$\displaystyle a+b = \frac{1}{2}$をみたすとき,$\ell_P$の傾きは1未満であることを示せ.
(4)$a,\ b$は$\displaystyle a+b = \frac{1}{2}$をみたすものとし,Qを(2)のようにとる.$\ell_Q$の傾きが最大になるような$a,\ b$を求めよ.
スポンサーリンク

「未満」とは・・・

 まだこのタグの説明は執筆されていません。