タグ「有理数」の検索結果

2ページ目:全54問中11問~20問を表示)
東京大学 国立 東京大学 2015年 第3問
$a$を正の実数とし,$p$を正の有理数とする.座標平面上の$2$つの曲線$y=ax^p (x>0)$と$y=\log x (x>0)$を考える.この$2$つの曲線の共有点が$1$点のみであるとし,その共有点を$\mathrm{Q}$とする.以下の問いに答えよ.必要であれば,$\displaystyle \lim_{x \to \infty} \frac{x^p}{\log x}=\infty$を証明なしに用いてよい.

(1)$a$および点$\mathrm{Q}$の$x$座標を$p$を用いて表せ.
(2)この$2$つの曲線と$x$軸で囲まれる図形を,$x$軸のまわりに$1$回転してできる立体の体積を$p$を用いて表せ.
(3)$(2)$で得られる立体の体積が$2 \pi$になるときの$p$の値を求めよ.
京都大学 国立 京都大学 2015年 第5問
$a,\ b,\ c,\ d,\ e$を正の有理数として整式

$f(x)=ax^2+bx+c$
$g(x)=dx+e$

を考える.すべての正の整数$n$に対して$\displaystyle \frac{f(n)}{g(n)}$は整数であるとする.このとき,$f(x)$は$g(x)$で割り切れることを示せ.
大阪大学 国立 大阪大学 2015年 第3問
以下の問いに答えよ.

(1)$\sqrt{2}$と$\sqrt[3]{3}$が無理数であることを示せ.
(2)$p,\ q,\ \sqrt{2}p+\sqrt[3]{3}q$がすべて有理数であるとする.そのとき,$p=q=0$であることを示せ.
佐賀大学 国立 佐賀大学 2015年 第4問
$p$を素数とするとき,次の問に答えよ.

(1)$2$つの自然数$m,\ n$の最大公約数は$1$であるとし,$\displaystyle x=\frac{n}{m}$とおく.$p^x$が有理数であるならば,$m=1$であることを示せ.
(2)方程式
\[ p^x=-x^2+9x-5 \]
が有理数の解$x$をもつような組$(p,\ x)$をすべて求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第1問
以下の問に答えよ.

(1)$a^5-12a^4+36a^3-81a+1,\ a^2-6a$が共に有理数となるような無理数$a$を求めよ.
(2)$a_1=1$,$a_2=e$,$a_{n+2}=a_n^{-2}a_{n+1}^3 (n=1,\ 2,\ 3,\ \cdots)$という条件で決まる数列$\{a_n\}$の第$n$項を求めよ.ただし,$e$は自然対数の底とする.
(3)$f(4)=k_1$,$f^\prime(4)=k_2$を満たすどんな関数$f(x)$についても,
\[ \lim_{x \to 0} \frac{4f((x+2)^2)-(x+2)^2f(4)}{x}=\alpha k_1+\beta k_2 \]
となる.このとき,定数$\alpha,\ \beta$はそれぞれいくらか.
名古屋大学 国立 名古屋大学 2015年 第1問
次の問に答えよ.

(1)関数$f(x)=x^{-2}2^x (x \neq 0)$について,$f^\prime(x)>0$となるための$x$に関する条件を求めよ.
(2)方程式$2^x=x^2$は相異なる$3$個の実数解をもつことを示せ.
(3)方程式$2^x=x^2$の解で有理数であるものをすべて求めよ.
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
沖縄国際大学 私立 沖縄国際大学 2015年 第1問
以下の各問いに答えなさい.

(1)以下の不等式を解きなさい.

(i) $-x<6$
(ii) $-3x+1<x<5x-8$

(2)$(x-3)(x+3)(x^2+9)(x^4+81)$を展開しなさい.
(3)以下の数を有理数,無理数,整数,自然数,実数に分類し解答欄に記入しなさい.
\[ 0.5 \qquad \sqrt{2} \qquad 4 \qquad -18 \qquad 0 \qquad 0.\dot{3} \]
解答欄

\begin{tabular}{|p{22mm}|p{22mm}|p{22mm}|p{22mm}|p{22mm}|}
\hline
有理数 & 無理数 & 整数 & 自然数 & 実数 \\ \hline
& $\phantom{\displaystyle\frac{[ ]}{[ ]}}$ & & & \\ \hline
\end{tabular}
兵庫県立大学 公立 兵庫県立大学 2015年 第1問
次の問に答えなさい.

(1)$2$つの解$\alpha=1+\sqrt{2}$,$\beta=\sqrt{3}$をもつ$2$次方程式を一つ求めなさい.
(2)ある$2$次方程式$f(x)=0$の解の$1$つが$\alpha=s+t \sqrt{2}$であった.このとき,もう一つの解$\beta$に関する次の議論は正しくないことを説明しなさい.
\begin{jituwaku}
$\alpha=s+t \sqrt{2}$から簡単な計算により,$\alpha^2-2s \alpha+s^2-2t^2=0$を得る.これは,$\alpha$が$x^2-2sx+s^2-2t^2=0$の解であることを意味することから,$f(x)=x^2-2sx+s^2-2t^2$がわかる.よって,$f(x)=0$のもう一つの解$\beta$は$x^2-2sx+s^2-2t^2=0$を解いて$\beta=s-t \sqrt{2}$と求まる.
\end{jituwaku}
(3)$2$次方程式$x^2+px+q=0$において,$p,\ q$は有理数とする.$\alpha=1+\sqrt{2}$がこの方程式の解であるとき,もう一方の解$\beta$を求めなさい.
筑波大学 国立 筑波大学 2014年 第4問
平面上の直線$\ell$に同じ側で接する$2$つの円$C_1$,$C_2$があり,$C_1$と$C_2$も互いに外接している.$\ell$,$C_1$,$C_2$で囲まれた領域内に,これら$3$つと互いに接する円$C_3$を作る.同様に$\ell$,$C_n$,$C_{n+1} (n=1,\ 2,\ 3,\ \cdots)$で囲まれた領域内にあり,これら$3$つと互いに接する円を$C_{n+2}$とする.円$C_n$の半径を$r_n$とし,$\displaystyle x_n=\frac{1}{\sqrt{r_n}}$とおく.このとき,以下の問いに答えよ.ただし,$r_1=16$,$r_2=9$とする.

(1)$\ell$が$C_1$,$C_2$,$C_3$と接する点を,それぞれ$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$とおく.線分$\mathrm{A}_1 \mathrm{A}_2$,$\mathrm{A}_1 \mathrm{A}_3$,$\mathrm{A}_2 \mathrm{A}_3$の長さおよび$r_3$の値を求めよ.
(2)ある定数$a,\ b$に対して$x_{n+2}=ax_{n+1}+bx_n (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.$a,\ b$の値も求めよ.
(3)$(2)$で求めた$a,\ b$に対して,$2$次方程式$t^2=at+b$の解を$\alpha,\ \beta (\alpha>\beta)$とする.$x_1=c \alpha^2+d \beta^2$を満たす有理数$c,\ d$の値を求めよ.ただし,$\sqrt{5}$が無理数であることは証明なしで用いてよい.
(4)$(3)$の$c,\ d,\ \alpha,\ \beta$に対して,
\[ x_n=c \alpha^{n+1}+d \beta^{n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となることを示し,数列$\{r_n\}$の一般項を$\alpha,\ \beta$を用いて表せ.
(図は省略)
スポンサーリンク

「有理数」とは・・・

 まだこのタグの説明は執筆されていません。