タグ「最後」の検索結果

3ページ目:全39問中21問~30問を表示)
島根県立大学 公立 島根県立大学 2013年 第1問
次の問いに答えよ.

(1)曲線$y=2x^3-ax^2+3bx$上の点$(-1,\ 4)$における接線が,直線$2013x-671y+2013=0$と平行になるとき,$a$と$b$の値を求めよ.
(2)$\mathrm{SUCCESS}$の$7$文字をすべて使ってできる順列のうち,最初の文字と最後の文字がともに$\mathrm{C}$となる確率を分数で答えよ.
(3)$(5x-y-2z)(25x^2+5xy+y^2-2yz+4z^2+10zx)$の展開式において,$xyz$の係数を求めよ.
(4)円$x^2+2x+y^2-3=0$上を動く点$\mathrm{P}$と,$2$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ -4)$を$3$つの頂点とする三角形$\mathrm{ABP}$の重心$\mathrm{G}$の軌跡は,中心が$(a,\ b)$,半径$r$の円となる.このとき,$a,\ b,\ r$の値を求めよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第4問
次のようなゲームについて以下の問に答えよ.

カードが$5$枚伏せてある.$1$回の試行ではカードをかき混ぜて$1$枚をでたらめに選んでめくり,出たカードの番号に対応する賞品がもらえる.$5$種類の賞品をすべてあつめるのが目的である.ただし,めくったカードはその都度戻すものとする.
ここで,すでに$k$種類の賞品を持っている状況で試行を$1$回行ってまだ持っていない賞品がもらえる確率を$P_k$で表すとする($0 \leqq k \leqq 4$).$P_0=1$である.

(1)$P_1$の値を求めよ.
(2)$P_k$を$k$を用いた式で表せ.
(3)$5$回の試行で賞品が全種類そろう確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(4)試行を$5$回行った時点で得られている賞品が$4$種類だけである確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(5)ある事象が起きる確率が$x$であるとき,その事象が起きるまで繰り返し試行を行うならば,必要な試行回数の期待値は$\displaystyle \frac{1}{x}$だと知られている.ここで,賞品を$k$種類($0 \leqq k \leqq 4$)持っている状況から始めてまだ持っていない賞品のいずれか$1$つが得られるまでの試行回数の期待値を$Q_k$で表すとする($0 \leqq k \leqq 4$).$Q_k$を$P_k$を用いた式で表せ.さらに$k$を用いた($P_k$を使わない)形で式を表せ.
(6)賞品を$n$種類持っている状況から始めて賞品が$m$種類そろうまでの試行回数の期待値は$\displaystyle \sum_{k=n}^{m-1} Q_k$となる.ただし,$0 \leqq n<m \leqq 4$である.賞品を$1$つも持っていない状況から$4$種類そろうまでと,$4$種類そろった状況から最後の$1$種類が出るまでと,試行回数の期待値はどちらが大きいか.計算して求めよ.
一橋大学 国立 一橋大学 2012年 第5問
最初に1の目が上面にあるようにサイコロが置かれている.その後,4つの側面から1つの面を無作為に選び,その面が上面になるように置き直す操作を$n$回繰り返す.なお,サイコロの向かい合う面の目の数の和は7である.

(1)最後に1の目が上面にある確率を求めよ.
(2)最後に上面にある目の数の期待値を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第2問
自然数を$2$乗した列を,次のように奇数個ずつの群に分ける.以下の問いに答えよ.
\begin{align}
& \{1\},\quad \{4,\ 9,\ 16\},\quad \{25,\ 36,\ 49,\ 64,\ 81\},\ \cdots \nonumber \\
& 第1群 \qquad 第2群 \qquad\qquad\qquad 第3群 \nonumber
\end{align}

(1)$625$は第何群の何番目の数か.
(2)第$n$群の最後の数を$n$の式で表せ.
(3)第$n$群の最初の数を$n$の式で表せ.
(4)第$n$群にあるすべての数の和を$n$の式で表せ.
広島大学 国立 広島大学 2012年 第4問
$N$は$4$以上の整数とする.次の規則にしたがって$1$個のさいころを繰り返し投げる.

規則:出た目を毎回記録し,偶数の目が$3$回出るか,あるいは奇数の目が$N$回出たところで,さいころを投げる操作を終了する.

ただし,さいころの目の出方は同様に確からしいとする.次の問いに答えよ.

(1)さいころを投げる回数は,最大で何回か.
(2)さいころを$3$回投げて操作を終了する確率を求めよ.
(3)さいころを$N$回投げて操作を終了する確率を求めよ.
(4)最後に奇数の目が出て操作を終了する確率を求めよ.
(5)$N=4$のとき,さいころを投げる回数の期待値を求めよ.
広島大学 国立 広島大学 2012年 第5問
$n$は自然数とし,点Pは次の規則にしたがって座標平面上を動くとする.\\
規則:\\
\quad (A) \ Pは,はじめに点$(1,\ 2)$にある.\\
\quad (B) \ さいころを投げて2以下の目が出ればPは原点を中心に反時計回りに$120^\circ$回転し,3以上の目が出れば時計回りに$60^\circ$回転する.\\
\quad (C) \ (B)を$n$回繰り返す.\\
ただし,さいころの目の出方は同様に確からしいとする.次の問いに答えよ.

(1)$n=3$のとき,出た目が$4,\ 1,\ 2$であったとする.このときPが最後に移った点の座標を求めよ.
(2)$n=3$のとき,Pが点$(1,\ 2)$にある確率を求めよ.
(3)$n=6$のとき,Pが点$(-1,\ -2)$にある確率を求めよ.
(4)$n=3m$のとき,Pが点$(1,\ 2)$にある確率を求めよ.ただし,$m$は自然数とする.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
袋の中に文字$\mathrm{K}$,$\mathrm{E}$,$\mathrm{I}$が書かれたカードがそれぞれ$1$枚ずつと,文字$\mathrm{O}$が書かれたカードが何枚か入っている.いま,袋の中から$1$枚ずつカードを取り出し,$\mathrm{K}$,$\mathrm{E}$,$\mathrm{I}$,$\mathrm{O}$のすべての文字のカードがそれぞれ$1$枚以上出たところで終了する.ただし,一度取り出したカードは袋の中には戻さないものとする.

(1)袋の中に文字$\mathrm{O}$が書かれたカードが$7$枚あり,合計$10$枚のカードが入っている場合を考える.$3$枚目に文字$\mathrm{O}$のカードを取り出す確率は$[ク]$であり,$1$枚目または$3$枚目に文字$\mathrm{O}$のカードを取り出す確率は$[ケ]$である.また,最後に取り出したカードに書かれている文字が$\mathrm{K}$である確率は$[コ]$である.
(2)袋の中に文字$\mathrm{O}$が書かれたカードが$n$枚($n \geq 2$)あり,合計$n+3$枚のカードが入っている場合を考える.$k$枚目で終了する確率を$p_k$とすると,$p_4=[サ]$であり,$5 \leq k \leq n+3$に対しては$p_k=[シ]$である.いま,終了した時点で袋の中に残っているカードの枚数の期待値を$E_n$とすると,$\displaystyle \lim_{n \to \infty} \frac{E_n}{n}= [ス]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
自然数$n$に対し整数を値にとる関数$f(n)$を次のように定める.
テーブルの上には$n$個の碁石が置かれている.$2$人のプレーヤー$\mathrm{A}$と$\mathrm{B}$が交互に碁石を$1$個あるいは$2$個とる.そして最後に碁石をとったプレーヤーが負けである.ゲームは$\mathrm{A}$から始める.$\mathrm{B}$がいかなるとり方をしても,$\mathrm{A}$が最良のとり方をすれば勝てるときは$f(n)=1$とする.逆に$\mathrm{A}$がいかなるとり方をしても,$\mathrm{B}$が最良のとり方をすれば勝てないときは$f(n)=-1$とする.それ以外の場合は$f(n)=0$とする.たとえば$f(1)=-1$,$f(2)=1$である.
\[ f(3)=[(101)][(102)],\quad f(4)=[(103)][(104)],\quad f(5)=[(105)][(106)] \]
であり
\[ \sum_{n=1}^{20}f(n)=[(107)][(108)] \]
となる.
北海学園大学 私立 北海学園大学 2012年 第5問
初項が$4$,公差が$8$の等差数列を,初項から順に,$2n$個の項が第$n$群に含まれるように分けていく.

$4,\ 12 \ | \ 20,\ 28,\ 36,\ 44 \ | \ 52,\ 60,\ 68,\ 76,\ 84,\ 92 \ | \ \cdots$
{\small 第$1$群} \qquad {\small 第$2$群} \qquad\qquad\qquad {\small 第$3$群}

たとえば,$60$はこの数列の第$3$群の小さい方から$2$番目の項である.ただし,縦線$|$は群の区切りを表し,$n=1,\ 2,\ 3,\ \cdots$である.

(1)第$n$群の最初の項と最後の項を,それぞれ$n$を用いて表せ.
(2)第$n$群の項の総和$S_n$を$n$を用いて表せ.また,$\displaystyle \frac{S_n}{n} \leqq 2012$を満たす最大の$n$を求めよ.
(3)$2012$は第何群の小さい方から何番目の項であるか答えよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \left( \frac{1}{9} \right)^x-4 \left( \frac{1}{3} \right)^{x-1}+27 \leqq 0$を満たす$x$の範囲は$[ア]$であり, \\
$\log_2 \left( \log_5 (x+1)+\log_5 (x+3) \right)<1$を満たす$x$の範囲は$[イ]$である.
(2)整式$P(x)$を$(x+1)(x-2)$で割ると余りは$2x+9$,$(x+1)(x+2)$で割ると余りは$-10x-3$になる.このとき$P(x)$を$(x+1)(x-2)(x+2)$で割ると,余りは$[ウ]$となる.また,$P(x)$を$(x-2)(x+2)$で割ると,余りは$[エ]$となる.
(3)関数$f(x)=x^3+3ax^2+b (b>0)$があり,方程式$f(x)=0$は$3$つの異なる実数解をもつ.このとき,実数$a$と$b$が満たす関係は$[オ]$であり,$f(x) \leqq f(0)$となる$x$の範囲は$[カ]$である.
(4)面積が$S$の正方形がある.この正方形の$4$辺をそれぞれ$1:3$に内分する点をとり,これら$4$つの内分点を頂点とする新たな正方形をつくる.この操作によってできる新たな正方形の面積は$[キ]$である.新たにできた正方形に同じ操作をほどこして,さらに新しい正方形をつくる.この操作を少なくとも$[ク]$回おこなうと,最後にできた正方形の面積が$\displaystyle \frac{1}{100}S$以下になる.ただし,$\log_{10}2=0.3010$とする.
(5)放物線$y=x^2$上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとり,$\mathrm{A}$における接線を$\ell$とする.$\mathrm{A}$と$\mathrm{B}$の$x$座標をそれぞれ$a,\ b$とし,線分$\mathrm{AB}$を$t:1-t$に内分する点$\mathrm{P}$をとる($0<t<1$).$\mathrm{P}$を通り$y$軸と平行な直線が,$\ell$と交わる点を$\mathrm{Q}$,放物線と交わる点を$\mathrm{R}$とする.このとき,$\mathrm{QR}$の長さは$[ケ]$であり,$\mathrm{QR}:\mathrm{RP}=[コ]$である.
スポンサーリンク

「最後」とは・・・

 まだこのタグの説明は執筆されていません。