タグ「最小」の検索結果

49ページ目:全521問中481問~490問を表示)
福井大学 国立 福井大学 2010年 第4問
$k$を実数とする.Oを原点とする座標平面上の曲線$C:y=\log x -k$について,$C$の接線のうちOを通るものを$\ell_1$とし,その接点をPとする.以下の問いに答えよ.

(1)$\ell_1$の方程式を,$k$を用いて表せ.
(2)点Pにおける$C$の法線を$\ell_2$とし,$\ell_2$と$x$軸との交点の$x$座標を$\alpha$とおく.$\alpha$を$k$を用いて表せ.さらに,$\alpha$が最小となる$k$の値および$\alpha$の最小値を求めよ.
(3)$k$を(2)で求めた値とするとき,$C$と$\ell_1$および$x$軸で囲まれた図形の面積を求めよ.
福井大学 国立 福井大学 2010年 第3問
$k$を正の整数とし,$a_1=k,\ a_{n+1}=2a_n+1 \ (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$を考える.以下の問いに答えよ.

(1)すべての$n$に対して,$a_{n+4}-a_n$は15で割り切れることを示せ.
(2)$a_{2010}$が15の倍数となる最小の$k$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第3問
関数$f(t)=2(\cos t-\sin t),\ g(t)=\cos t+\sin t$を用いて媒介変数表示された,$xy$平面上の曲線$C:x=f(t),\ y=g(t)$がある.点A$\displaystyle \left( \frac{3}{4},\ \frac{3}{2} \right)$から$C$上の点P$(f(t),\ g(t))$までの距離APの2乗$\text{AP}^2$を$h(t)$とおく.

(1)$\displaystyle \frac{d}{dt}h(t)=0$となる$t$の値を$0 \leqq t \leqq 2\pi$の範囲ですべて求めよ.
(2)$C$は楕円であることを示せ.
(3)Pが$C$上を動くとき,APを最小にするPの座標,およびAPを最大にするPの座標を求めよ.
秋田大学 国立 秋田大学 2010年 第3問
$xy$平面上の放物線$y=x^2$の$x \geqq 0$の部分を$C$とし,$C$上の点P$(x,\ y)$と点A$(0,\ a)$の間の距離をAPで表す.次の問いに答えよ.

(1)APを$a$と$y$を用いて表せ.
(2)Pが$C$上を動くとき,$\text{AP}^2$を最小にするPをP$_0$とする.P$_0$が原点Oと異なるような$a$の範囲を求め,そのときのP$_0$の座標を$a$を用いて表せ.
(3)(2)のP$_0$に対して,$\triangle$OP$_0$Aの内角$\angle \text{OP}_0 \text{A}$の大きさを$\theta$とするとき,$\tan \theta=2\sqrt{2}$となる$a$の値を求めよ.
群馬大学 国立 群馬大学 2010年 第4問
$\triangle$OABにおいて辺OAを$1:2$に内分する点をP,線分PBを$s:1-s$に内分する点をQとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ s$を用いて表せ.
(2)線分OQの延長と辺ABの交点が辺ABを$3:4$に内分するときの$s$の値を求めよ.
(3)$\triangle$OABを$\text{OA}=\text{OB}$の直角二等辺三角形とし,その重心をGとする.線分GQの長さを最小にするときの$s$の値を求めよ.
群馬大学 国立 群馬大学 2010年 第4問
$\triangle$OABにおいて辺OAを$1:2$に内分する点をP,線分PBを$s:1-s$に内分する点をQとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ s$を用いて表せ.
(2)線分OQの延長と辺ABの交点が辺ABを$3:4$に内分するときの$s$の値を求めよ.
(3)$\triangle$OABを$\text{OA}=\text{OB}$の直角二等辺三角形とし,その重心をGとする.線分GQの長さを最小にするときの$s$の値を求めよ.
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
群馬大学 国立 群馬大学 2010年 第4問
$\triangle$OABにおいて辺OAを$1:2$に内分する点をP,線分PBを$s:1-s$に内分する点をQとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ s$を用いて表せ.
(2)線分OQの延長と辺ABの交点が辺ABを$3:4$に内分するときの$s$の値を求めよ.
(3)$\triangle$OABを$\text{OA}=\text{OB}$の直角二等辺三角形とし,その重心をGとする.線分GQの長さを最小にするときの$s$の値を求めよ.
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。