タグ「最小」の検索結果

44ページ目:全521問中431問~440問を表示)
北海学園大学 私立 北海学園大学 2011年 第3問
数列$\{a_n\}$を初項$a$,公差$d$の等差数列とし,$a_5=108$とする.また,$\{a_n\}$の初項から第$n$項までの和を$S_n$とし,$S_{11}>0$,$S_{12}<0$とする.ただし,$n=1,\ 2,\ 3,\ \cdots$とする.

(1)$a$を$d$を用いて表せ.
(2)$d$の値の範囲を求めよ.
(3)$a_n<0$となる最小の$n$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第6問
数列$\{a_n\}$は初項$200$,公差$d$の等差数列であり,$\{a_n\}$の第$15$項から第$20$項までの和が$309$であるとする.$\{a_n\}$の初項から第$n$項までの和を$S_n$とおく.ただし,$n=1,\ 2,\ 3,\ \cdots$とする.

(1)$d$の値を求めよ.
(2)$a_n<0$となるような最小の自然数$n$を求めよ.また,$S_n$の最大値を求めよ.
(3)$b_n=S_n (n=1,\ 2,\ 3,\ \cdots)$によって定義される数列$\{b_n\}$の初項から第$n$項までの和$T_n$を求めよ.
北海学園大学 私立 北海学園大学 2011年 第4問
数列$\{a_n\}$を初項$a$,公差$d$の等差数列とし,$a_5=108$とする.また,$\{a_n\}$の初項から第$n$項までの和を$S_n$とし,$S_{11}>0$,$S_{12}<0$とする.ただし,$n=1,\ 2,\ 3,\ \cdots$とする.

(1)$a$を$d$を用いて表せ.
(2)$d$の値の範囲を求めよ.
(3)$a_n<0$となる最小の$n$の値を求めよ.
東北学院大学 私立 東北学院大学 2011年 第3問
$2$つの円$(x+2)^2+(y+2)^2=1$と$(x-6)^2+(y-4)^2=9$を内部または周上に含む円で,半径が最小のものを$C$とする.次の問いに答えよ.

(1)円$C$の中心$\mathrm{A}$の座標と半径$r$を求めよ.
(2)点$\mathrm{P}(x,\ y)$が円$C$の周上を動くとき,$x+2y$の最大値と最小値を求めよ.
南山大学 私立 南山大学 2011年 第2問
点$\mathrm{A}(1,\ 0)$を通る傾き$k$の直線を$\ell$とする.$\ell$と放物線$C:y=-x^2-2x+4$の$2$つの交点を$\mathrm{P}(\alpha,\ -\alpha^2-2 \alpha+4)$,$\mathrm{Q}(\beta,\ -\beta^2-2 \beta+4)$とする.ただし,$\alpha<\beta$である.

(1)$\beta-\alpha$を$k$を用いて表せ.
(2)$\beta-\alpha$が最小となるときの$k$の値を求めよ.
(3)$(2)$のとき,$\ell$と$C$で囲まれた図形の面積を求めよ.
(4)$(2)$のとき,$C$上を$\mathrm{P}$から$\mathrm{Q}$まで動く点を$\mathrm{R}$とする.線分$\mathrm{AR}$の中点$\mathrm{M}$の軌跡を求めよ.
南山大学 私立 南山大学 2011年 第2問
曲線$\displaystyle C:y=\frac{e^{a(x+2)}}{a} (a>0)$と原点$\mathrm{O}$から$C$に引いた接線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$と$y$軸とで囲まれた部分の面積$S$を$a$を用いて表せ.
(3)(2)の$S$について,$S$を最小にする$a$の値と$S$の最小値を求めよ.
龍谷大学 私立 龍谷大学 2011年 第3問
三角形$\mathrm{OAB}$において,$\mathrm{OA}=\sqrt{10}$,$\mathrm{OB}=1$,$\mathrm{AB}=\sqrt{5}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.$n$を整数とし,$L={|\displaystyle \frac{1|{4} \overrightarrow{a}+n \overrightarrow{b}}}^2$を考える.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めなさい.
(2)$L$を$n$で表しなさい.
(3)$L$を最小にする整数$n$を求めなさい.
明治大学 私立 明治大学 2011年 第2問
以下の$[あ]$から$[お]$にあてはまるものを答えよ.

座標平面上に$3$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{C}(2,\ 4)$をとり,$\theta=\angle \mathrm{ABC}$とおく.ただし,$-1<b<2$とする.
(1)直線$\mathrm{AB}$の傾きと直線$\mathrm{BC}$の傾きを$b$を用いて表すと,それぞれ$[あ]$,$[い]$である.
(2)$\displaystyle \theta=\frac{\pi}{2}$となるのは,$b=[う]$のときである.
(3)$\displaystyle \theta \neq \frac{\pi}{2}$のとき,$\tan \theta$を$b$で表すと,$[え]$である.
(4)$b$が$-1<b<2$の範囲を動くとき,$\theta$の値が最小となるのは,$b=[お]$のときである.
日本女子大学 私立 日本女子大学 2011年 第2問
図のように$1$から$7$までの番号を$1$つずつ書いた$7$枚のカードがある.この中から$4$枚を同時に取り出すとき,次の問いに答えよ.

(1)取り出された$4$枚のカードの番号のうち,最大のものが$6$以上になる確率を求めよ.
(2)取り出された$4$枚のカードの番号のうち,最大のものから最小のものを引いた値が$4$以下になる確率を求めよ.
\[ \fbox{ $1$ } \quad \fbox{ $2$ } \quad \fbox{ $3$ } \quad \fbox{ $4$ } \quad \fbox{ $5$ } \quad \fbox{ $6$ } \quad \fbox{ $7$ } \]
学習院大学 私立 学習院大学 2011年 第1問
次の$3$つの条件をすべて満たす$3$角形の$3$辺の長さを求めよ.

$(ⅰ)$ 最大角と最小角の差は$90^\circ$である.
$(ⅱ)$ $3$辺の長さを大きさの順に並べたものは等差数列である.
$(ⅲ)$ $3$辺の長さの和は$3$である.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。