タグ「最小」の検索結果

42ページ目:全521問中411問~420問を表示)
徳島大学 国立 徳島大学 2011年 第4問
$\displaystyle X=\frac{1}{4} \biggl( \begin{array}{cc}
\sqrt{6} & 2\sqrt{2} \\
5\sqrt{2} & 2\sqrt{6}
\end{array} \biggr),\ Y=\biggl( \begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & -2
\end{array} \biggr)$のとき$A=XY$とする.行列$A^n \ (n=1,\ 2,\ 3,\ \cdots)$の表す移動によって,点$(-10^8,\ \sqrt{3}\times 10^8)$が点P$_n$に移るとする.$\log_{10}2=0.3010$として,次の問いに答えよ.

(1)$A=k \biggl( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \biggr)$を満たす$k$と$\theta$を求めよ.ただし,$k>0$とし,$\theta$は$0 \leqq \theta < 2\pi$とする.
(2)点P$_n$が中心$(0,\ 0)$,半径1の円の内部にある$n$のうちで,最小の$n$の値を求めよ.
(3)不等式$2^8 < \sqrt{x^2+y^2} < 2^{15},\ y>|\,x\,|$の表す領域を$D$とする.点P$_n$が$D$内にある$n$の値をすべて求めよ.
香川大学 国立 香川大学 2011年 第1問
放物線$C_1:y=x^2$と定点$\mathrm{P}(a,\ b)$(ただし,$a^2<b$)を通る放物線$C_2:y=-3x^2+2px+q$の交点を$\mathrm{A}$,$\mathrm{B}$とする.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\text{ただし,} \ \alpha < \beta)$とする.$2$つの放物線$C_1,\ C_2$で囲まれた図形の面積を$S$とするとき,次の問に答えよ.

(1)$S$を$a,\ b,\ p$を用いて表せ.
(2)$S$を最小にする$p$とその最小値を$a,\ b$を用いて表せ.
(3)$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.(2)のとき,線分$\mathrm{PM}$の長さを$a,\ b$を用いて表せ.
(4)(2)のとき,点$\mathrm{P}$における放物線$C_2$の接線$\ell$と直線$\mathrm{AB}$は平行であることを示せ.
山口大学 国立 山口大学 2011年 第2問
座標平面において,2点A$(1,\ 0)$,B$(2,\ 0)$を原点のまわりに$\theta$だけ回転した点をそれぞれC,Dとおく,ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.点Cを通り直線CDと垂直に交わる直線を$\ell$とし,点Dを通り直線CDと垂直に交わる直線を$m$とする.また,直線$\ell$と直線$m$によりはさまれた領域を$S$とし,不等式$0 \leqq y \leqq x$の表す領域を$T$とする.このとき,次の問いに答えなさい.

(1)直線$\ell,\ m$の方程式を求めなさい.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,領域$S$と領域$T$の共通部分の面積を最小にする$\theta$の値を求めなさい.
佐賀大学 国立 佐賀大学 2011年 第3問
$xy$平面上の原点をOとし,放物線$y=k-x^2$を$C$とする.ただし,$k$は$\displaystyle \frac{1}{2}$より大きい定数とする.$C$上の点P$(t,\ k-t^2)$が$t \geqq 0$の範囲で動くときOPの長さが最小となるPをP$_0$とおく.

(1)P$_0$の座標を求めよ.
(2)OとP$_0$を通る直線と,P$_0$における$C$の接線が直交することを示せ.
(3)OとP$_0$を通る直線の傾きが1のとき,$k$の値を求めよ.
(4)OとP$_0$を通る直線の傾きが1のとき,$xy$平面の第1象限にあって,$x$軸,$y$軸および放物線$C$に接する円のうち小さい方の半径を求めよ.
群馬大学 国立 群馬大学 2011年 第5問
自然数$k$に対し,$\displaystyle a_k=\frac{(3k+1)(3k+2)}{3k(k+1)}$で与えられる数列を考える.

(1)$\displaystyle \sum_{k=1}^n a_k$を$n$の式で表す.
(2)数列$\{a_k\}$から$b_1=a_1,\ b_2=a_2+a_3+a_4,\ b_3=a_5+a_6+a_7+a_8+a_9,\ \cdots$のように,奇数個ずつの$a_k$の和をとり数列$\{b_k\}$を考えるとき,$\displaystyle \sum_{k=1}^n b_k \geqq 675$となる最小の$n$の値を求めよ.
新潟大学 国立 新潟大学 2011年 第1問
行列$A=\biggl( \begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array} \biggr)$について,次の問いに答えよ.

(1)$A^2,\ A^3$を求めよ.
(2)$A^n=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr)$となる最小の自然数$n$を求めよ.
(3)$A+A^2+A^3+\cdots +A^{100}$を求めよ.
福井大学 国立 福井大学 2011年 第2問
Oを原点とする座標平面上に2点A$(4,\ 2)$,B$(5,\ 0)$がある.AをP$_0$とし,P$_0$から直線OBに下ろした垂線と直線OBとの交点をP$_1$,P$_1$から直線OAに下ろした垂線と直線OAとの交点をP$_2$とする.同様にして,自然数$n$に対して,P$_{2n}$から直線OBに下ろした垂線と直線OBとの交点をP$_{2n+1}$,P$_{2n+1}$から直線OAに下ろした垂線と直線OAとの交点をP$_{2n+2}$とする.さらに,自然数$n$に対して,線分P$_{n-1}$P$_n$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_n$を$n$の式で表せ.
(2)$l_1+l_2+\cdots +l_n> \text{OA}+\text{OB}$となる最小の$n$の値を求めよ.ただし,$\log_{10}2=0.3010$とする.
(3)線分P$_{2n-1}$P$_{2n}$の中点をM$_n$とするとき,点M$_1$,M$_2$,M$_3$,$\cdots$,M$_n$,$\cdots$は一直線上にあることを示し,その直線の方程式を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第3問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \frac{1}{x^2} \log x \, dx$および$\displaystyle \int \frac{1}{x^2} (\log x)^2 \, dx$を求めよ.
(2)実数$a$に対して,曲線$\displaystyle y=\frac{1}{x}(a+\log x) \ (1 \leqq x \leqq e)$と$x$軸および2直線$x=1,\ x=e$で囲まれた部分を,$x$軸のまわりに1回転させてできる立体の体積を$V$とする.$V$を$a$を用いて表せ.また,$a$が実数全体を動くとき,$V$を最小とする$a$の値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2011年 第1問
座標平面上に3点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( x,\ \frac{1}{2} \right) \ (x>0)$を考える.ベクトル$t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}}$の長さを最小にする実数$t$の値を$t_0$とし,点$\mathrm{H}$を$\overrightarrow{\mathrm{OH}}=t_0 \overrightarrow{\mathrm{OA}}+(1-t_0) \overrightarrow{\mathrm{OB}}$で定まる点とする.

(1)$t_0$を$x$を用いて表せ.
(2)$\mathrm{H}$が線分$\mathrm{AB}$を2等分するとき,$x$の値を求めよ.
(3)$x$を動かすとき,$\triangle \mathrm{OAH}$の面積が最大になる$x$の値を求めよ.
福岡教育大学 国立 福岡教育大学 2011年 第2問
次の問いに答えよ.

(1)数列$\{a_n\}$において,$a_n$は小数第$1$位から小数第$n$位までの数字が$0$で小数第$(n+1)$位から小数第$2n$位までの数字が$9$であり,小数第$(2n+1)$位以降の数字が$0$である実数とする.ただし,$0<a_n<1 \ (n=1,\ 2,\ 3,\ \cdots)$とする.また,数列$\{b_n\}$を,$b_n=10^na_n \ (n=1,\ 2,\ 3,\ \cdots)$で定める.

(i) $b_1,\ b_2,\ b_3$を求め,数列$\{b_n\}$の一般項を求めよ.
(ii) $\displaystyle s_n=\sum_{k=1}^n a_k$とおく.$s_n$を求めよ.
(iii) $\displaystyle \lim_{n \to \infty}s_n$を求めよ.

(2)当たりくじが$k$本入っている$n$本のくじがある.ただし,$n \geqq 2$とする.この中から$2$本のくじを同時に引く.

(i) 少なくとも$1$本当たる確率を,$n$および$k$で表せ.
(ii) $n=21$のとき,少なくとも$1$本当たる確率が$\displaystyle \frac{1}{2}$以上となる最小の$k$を求めよ.
(iii) $n=21$のとき,$2$本とも当たる確率が$\displaystyle \frac{1}{2}$以下となる最大の$k$を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。