タグ「最小」の検索結果

41ページ目:全521問中401問~410問を表示)
一橋大学 国立 一橋大学 2011年 第3問
$xy$平面上に放物線$C:y=-3x^2+3$と2点A$(1,\ 0)$,P$(0,\ 3p)$がある.線分APと$C$は,Aとは異なる点Qを共有している.

(1)定数$p$の存在する範囲を求めよ.
(2)$S_1$を,$C$と線分AQで囲まれた領域とし,$S_2$を,$C$,線分QP,および$y$軸とで囲まれた領域とする.$S_1$と$S_2$の面積の和が最小となる$p$の値を求めよ.
九州大学 国立 九州大学 2011年 第3問
数列$a_1,\ a_2,\ \cdots,\ a_n,\ \cdots$は
\[ a_{n+1} = \frac{2a_n}{1-a_n^2}, \quad n=1,\ 2,\ 3,\ \cdots \]
をみたしているとする.このとき,以下の問いに答えよ.

(1)$\displaystyle a_1=\frac{1}{\sqrt{3}}$とするとき,一般項$a_n$を求めよ.
(2)$\displaystyle \tan \frac{\pi}{12}$の値を求めよ.
(3)$\displaystyle a_1=\tan \frac{\pi}{20}$とするとき,
\[ a_{n+k} = a_n, \quad n=3,\ 4,\ 5,\ \cdots \]
をみたす最小の自然数$k$を求めよ.
秋田大学 国立 秋田大学 2011年 第2問
円$C_1:x^2+y^2=25$と円$C_2:(x-10)^2+(y-5)^2=50$の$2$つの交点と原点を通る円を$C_3$とする.次の問いに答えよ.

(1)円$C_3$の中心と半径を求めよ.
(2)点P$(x,\ y)$が円$C_3$上を動くとき,$2y-x$の最大値を求めよ.
(3)円$C_1$と円$C_2$の$2$つの交点を通る円の中心の軌跡を求めよ.
(4)円$C_1$と円$C_2$の$2$つの交点を通る円を$C$とする.点Q$(x,\ y)$が円$C$上を動くとき,$2y-x$の最大値が最小となる円$C$の中心と半径を求めよ.
秋田大学 国立 秋田大学 2011年 第3問
$\displaystyle f(x) = \frac{3\sqrt{3}}{4}-\sin 2x, g(x)=\frac{3\sqrt{3}}{4}-2\cos x$とする.

(1)関数$\{f(x)\}^2-\{g(x)\}^2$の不定積分を求めよ.
(2)すべての実数$x$に対して,不等式$\sin 2x \leqq a-2\cos x$が成り立つような定数$a$の中で最小の値を求めよ.
(3)定積分$\displaystyle \int_0^\pi |\{f(x)\}^2-\{g(x)\}^2|\, dx$を求めよ.
岡山大学 国立 岡山大学 2011年 第3問
平面上の異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は同一直線上にないものとする.この平面上の点$\mathrm{P}$が
\[ 2|\overrightarrow{\mathrm{OP}}|^2 - \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}} + 2 \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}} - \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}} = 0 \]
を満たすとき,次の問いに答えよ.

(1)$\mathrm{P}$の軌跡が円となることを示せ.
(2)$(1)$の円の中心を$\mathrm{C}$とするとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$で表せ.
(3)$\mathrm{O}$との距離が最小となる$(1)$の円周上の点を$\mathrm{P}_0$とする.$\mathrm{A}$,$\mathrm{B}$が条件
\[ |\overrightarrow{\mathrm{OA}}|^2+5\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}+4|\overrightarrow{\mathrm{OB}}|^2 = 0 \]
を満たすとき,$\overrightarrow{\mathrm{OP_0}} = s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$となる$s,\ t$の値を求めよ.
大阪大学 国立 大阪大学 2011年 第1問
$a$を自然数とする.$\mathrm{O}$を原点とする座標平面上で行列$A=\left( \begin{array}{cc}
a & -1 \\
1 & a
\end{array} \right)$の表す$1$次変換を$f$とする.

(1)$r>0$および$0 \leqq \theta < 2\pi$を用いて$A=\left( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \right)$と表すとき,$r,\ \cos \theta,\ \sin \theta$を$a$で表せ.
(2)点$\mathrm{Q}(1,\ 0)$に対し,点$\mathrm{Q}_n (n = 1,\ 2,\ 3)$を
\[ \mathrm{Q}_1 = \mathrm{Q},\quad \mathrm{Q}_{n+1} = f(\mathrm{Q}_n) \]
で定める.$\triangle \mathrm{OQ}_n \mathrm{Q}_{n+1}$の面積$S(n)$を$a$と$n$を用いて表せ.
(3)$f$によって点$(2,\ 7)$に移されるもとの点$\mathrm{P}$の$x$座標の小数第一位を四捨五入して得られる近似値が$2$であるという.自然数$a$の値を求めよ.またこのとき$S(n)>{10}^{10}$となる最小の$n$の値を求めよ.ただし$0.3 < \log_{10}2 < 0.31$を用いてよい.
九州大学 国立 九州大学 2011年 第2問
数列$a_1,\ a_2,\ \cdots,\ a_n,\ \cdots$は
\[ a_{n+1} = \frac{2a_n}{1-a_n^2},\quad n = 1,\ 2,\ 3,\ \cdots \]
をみたしているとする.このとき,以下の問いに答えよ.

(1)$\displaystyle a_1 = \frac{1}{\sqrt{3}}$とするとき,$a_{10}$および$a_{11}$を求めよ.
(2)$\displaystyle \tan \frac{\pi}{12}$の値を求めよ.
(3)$\displaystyle a_1 = \tan \frac{\pi}{7}$とする.$a_k = a_1$をみたす$2$以上の自然数$k$で最小のものを求めよ.
島根大学 国立 島根大学 2011年 第3問
$2$つの放物線$C_0:y=-x^2$と$C_1:y=(x-1)^2$について,次の問いに答えよ.

(1)$C_0$上の点$(a,\ -a^2)$における接線の方程式を求めよ.
(2)$C_1$上に点$\mathrm{P}(p,\ (p-1)^2)$を任意にとるとき,点$\mathrm{P}$を通り$C_0$に接する直線は$2$本あることを示せ.
(3)(2)の$2$本の直線が$C_0$と接する点を$\mathrm{A}$,$\mathrm{B}$とし,$2$直線$\mathrm{AP}$,$\mathrm{BP}$及び放物線$C_0$で囲まれた部分の面積を$S$とするとき,$S^2$が最小となる$p$の値と,そのときの$S^2$の値を求めよ.
岩手大学 国立 岩手大学 2011年 第3問
$\{a_n\}$は,初項$a_1=-1$,公差$d$の等差数列で,$\{b_n\}$は,初項$b_1=2011$,公比$r$の等比数列とする.ただし,$d \neq 0,\ r \neq 0$とする.これらの数列が
\[ a_nb_{n-1}+3b_na_{n-1}-2b_{n-1}=0 \quad (n \geqq 2) \]
を満たしているとき,次の問いに答えよ.

(1)$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(2)$|b_n|<|a_n|$となる最小の$n$の値を求めよ.
岩手大学 国立 岩手大学 2011年 第3問
$\{a_n\}$は,初項$a_1=-1$,公差$d$の等差数列で,$\{b_n\}$は,初項$b_1=2011$,公比$r$の等比数列とする.ただし,$d \neq 0,\ r \neq 0$とする.これらの数列が
\[ a_nb_{n-1}+3b_na_{n-1}-2b_{n-1}=0 \quad (n \geqq 2) \]
を満たしているとき,次の問いに答えよ.

(1)$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(2)$|b_n|<|a_n|$となる最小の$n$の値を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。