タグ「最小」の検索結果

40ページ目:全521問中391問~400問を表示)
北海道科学大学 私立 北海道科学大学 2012年 第11問
$x$の$2$次関数$y=ax^2+4ax+b (a>0)$について次の各問に答えよ.

(1)この関数のグラフの頂点の座標を$a,\ b$を用いて表せ.
(2)この関数の値が$-3 \leqq x \leqq 2$において,最大になるときと最小になるときの$x$の値をそれぞれ求めよ.
(3)$-3 \leqq x \leqq 2$におけるこの関数の最大値が$3$,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.
(4)$(3)$のとき,この$2$次関数のグラフの$x$軸および$y$軸との共有点を求めて,グラフを描け.
愛知工業大学 私立 愛知工業大学 2012年 第1問
次の$[ ]$を適当に補え.

(1)$|x+1|-3 |x-1|=4x+1$をみたす$x$は$x=[ア]$である.
(2)$3$つのさいころを同時に投げるとき,$2$つは同じで他の$1$つは異なる目が出る確率は$[イ]$であり,$3$つとも異なる目が出る確率は$[ウ]$である.
(3)$\displaystyle S_n=\sum_{k=1}^n \left( \frac{1}{2k-1}-\frac{1}{2k+1} \right)$とする.$S_n$を$n$の式で表すと$S_n=[エ]$であり,$\displaystyle S_n>\frac{2011}{2012}$となるような最小の自然数$n$の値は$n=[オ]$である.
(4)$xy$平面において,点$(0,\ 1)$を$\mathrm{A}$とする.点$\mathrm{P}$が直線$y=2x-1$上を動くとき,線分$\mathrm{AP}$を$1:2$に内分する点は直線$y=[カ]$上を動く.
(5)$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[キ]$,$\sin \theta=[ク]$である.
(6)$f(x)=\sqrt{x}$のとき,$f^\prime(x)=[ケ]$である.また,$\displaystyle \int_{\left( \frac{\pi}{2} \right)^2}^{\pi^2} \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx=[コ]$である.
大同大学 私立 大同大学 2012年 第4問
$0<a<2$,$f(x)=x^2(x-2)$,$g(x)=a^2(x-2)$とする.

(1)曲線$y=f(x)$と直線$y=g(x)$の交点の$x$座標を求めよ.
(2)曲線$y=f(x)$と直線$y=g(x)$で囲まれる$2$つの部分の面積の和$S(a)$を求めよ.
(3)$S(a)$を最小にする$a$の値を求めよ.
県立広島大学 公立 県立広島大学 2012年 第3問
数列$\{a_n\}$を
\[ a_1=1,\ a_{n+1}=a_n-\log_5 2^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$5^{a_n} < 10^{-14}$を満たす最小の$n$を求めよ.ただし,$\log_{10}2=0.3010$とする.
愛知県立大学 公立 愛知県立大学 2012年 第4問
$A=\biggl( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \biggr)$とする.このとき,以下の問いに答えよ.

(1)すべての自然数$n$について,
\[ A^n=\biggl( \begin{array}{cc}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array} \biggr) \]
となることを数学的帰納法で示せ.
(2)$\theta=20^\circ$のとき,$A^m=E$となる最小の自然数$m$を求めよ.ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr)$である.
(3)$\theta=20^\circ$のとき,(2)で求められた$m$を用いて
\[ A+A^2+\cdots +A^m \]
を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第2問
以下の問いに答えよ.

(1)$|x+y+1| \leqq 3$で定まる座標平面の領域を$D$とする.$D$を図示せよ.
(2)方程式$\displaystyle y= \left( -1+\frac{1}{a} \right)x$で与えられる直線$\ell$と,(1)で定めた領域$D$の共通部分として与えられる線分を考える.この線分の長さの最小値を求めよ.また,線分の長さが最小となるときの直線$\ell$は,どのような方程式で与えられるか.ただし,$a$は$0$でない定数とする.
滋賀県立大学 公立 滋賀県立大学 2012年 第1問
$y=x(x-2a) (a>0)$で表される放物線$C$がある.$C$の頂点$\mathrm{P}$を通る$y$軸に平行な直線と,$x$軸との交点を$\mathrm{Q}$とする.また,$C$上を原点$\mathrm{O}$から$\mathrm{P}$まで動く点を$\mathrm{R}$とし,$\mathrm{R}$を通り$x$軸に平行な直線と線分$\mathrm{PQ}$との交点を$\mathrm{H}$とする.

(1)線分$\mathrm{OQ}$,線分$\mathrm{PQ}$および$C$で囲まれた領域の面積$S$を$a$を用いて表せ.
(2)線分$\mathrm{OR}$と$C$で囲まれた領域の面積と,線分$\mathrm{RH}$,線分$\mathrm{PH}$および$C$で囲まれた領域の面積との和を$T$とするとき,$T$を最小にする$\mathrm{R}$の座標と$T$の最小値を$a$を用いて表せ.
富山県立大学 公立 富山県立大学 2012年 第1問
$m_1,\ m_2,\ p$は定数で$m_1<m_2$とする.放物線$C:y=x^2-x$が$2$つの直線$\ell_1:y=m_1x-1$,$\ell_2:y=m_2x-1$に接するとき,次の問いに答えよ.

(1)$m_1,\ m_2$の値を求めよ.
(2)$C$上の点$\mathrm{P}(p,\ p^2-p)$を通る$C$の接線$\ell$の方程式を$y=ax+b (m_1<a<m_2)$とする.$p$を用いて,定数$a,\ b$を表せ.
(3)$\ell$と$\ell_1$の共有点を$\mathrm{A}(x_1,\ y_1)$,$\ell$と$\ell_2$の共有点を$\mathrm{B}(x_2,\ y_2)$とする.線分$\mathrm{AB}$の長さが最小となるときの$p$の値を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第4問
自然数を自然数に移す関数$f(n)=\left\{ \begin{array}{cl}
\displaystyle\frac{n}{2} & (n \text{が偶数のとき}) \\
n+1 & (n \text{が奇数のとき})
\end{array} \right.$について,$f$が$m$を$n$に移すことを,$m \longmapsto \hspace{-9mm} {\phantom{\frac{1}{2}}}^f \hspace{3mm} n$と表す.例えば,
\[ 2 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{2.5mm} 1,\qquad 3 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 4 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 2 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 1 \]
である.$2$以上の自然数$n$を$f$で繰り返し移すとき,$1$に移るまでに必要な最小の移動回数を$a_n$とする.したがって,$a_2=1$,$a_3=3$である.$n$を自然数として,以下の問いに答えよ.

(1)$a_{2n+1}$と$a_{2n+2}$をそれぞれ$a_{n+1}$を用いて表せ.
(2)数列$\{a_2,\ a_3,\ a_4,\ \cdots \}$を次のように,第$n$群の項数が$2^{n-1}$になるように分ける.
\[ a_2 \;|\; a_3,\ a_4 \;|\; a_5,\ a_6,\ a_7,\ a_8 \;|\; a_9,\ a_{10},\ a_{11},\ a_{12},\ a_{13},\ a_{14},\ a_{15},\ a_{16} \;|\; \cdots \]

(i) 第$n$群の初項を$n$を用いて表せ.
(ii) 第$n$群の総和を$S_n$とする.$S_{n+1}$を$n$と$S_n$を用いて表せ.また,$S_n$を$n$を用いて表せ.
(iii) $\displaystyle \sum_{k=2}^{2^n} a_k$を$n$を用いて表せ.
東京大学 国立 東京大学 2011年 第1問
$x$の3次関数$f(x) = ax^3+bx^2+cx+d$が,3つの条件
\[ f(1) = 1, f(-1)=-1, \int_{-1}^{1}(bx^2+cx+d)\, dx=1 \]
を全て満たしているとする.このような$f(x)$の中で定積分
\[ I = \int_{-1}^{\frac{1}{2}} \{f^{\ \prime\prime}(x) \}^2\, dx \]
を最小にするものを求め,そのときの$I$の値を求めよ.ただし,$f^{\prime\prime}(x)$は$f^\prime(x)$の導関数を表す.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。