タグ「最小」の検索結果

39ページ目:全521問中381問~390問を表示)
関西大学 私立 関西大学 2012年 第3問
次の$[ ]$を数値でうめよ.

放物線$y=ax^2+bx+c$の頂点の$x$座標は$\displaystyle \frac{11}{12}$であり,この放物線は$x$座標が$1$の点で直線$\displaystyle y=\frac{x}{3}+1$に接している.このとき,$a=[$①$]$,$b=[$②$]$,$c=[$③$]$である.この$a,\ b,\ c$に対し,$f(x)$を
\[ f(x)=\left\{ \begin{array}{lll}
ax^2+bx+c & & x \leqq 1 \\ \\
\displaystyle \frac{x}{3}+1 & & x>1
\end{array} \right. \]
と定め
\[ F(t)=\int_t^{t+1} f(x) \, dx \]
とおく.このとき,$F(t)$は$0 \leqq t \leqq 1$である$t$に対し
\[ F(t)=[$④$]t^3+[$⑤$]t^2-[$⑥$]t+\frac{11}{6} \]
と表される.$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$F(t)$の値が最小になるのは$t=[$④chi$]$のときである.
青山学院大学 私立 青山学院大学 2012年 第5問
次の条件によって定められる数列$\{a_n\}$を考える.
\[ a_1=2,\quad a_{n+1}=\frac{4a_n}{3a_n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3,\ a_4$を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$a_n-1<10^{-5}$となる最小の自然数$n$を求めよ.ただし$\log_{10}2=0.3010$とする.
福岡大学 私立 福岡大学 2012年 第3問
曲線$y=x^2-1$上を動く点$\mathrm{P}$と,直線$y=x-3$上を動く点$\mathrm{Q}$との距離が最小となるときの点$\mathrm{Q}$の座標は$[ ]$であり,このときの距離は$[ ]$である.
福岡大学 私立 福岡大学 2012年 第4問
$0<k<2$とする.曲線$C:y=x^2$上を動く点$\mathrm{P}$と,直線$y=2k(x-1)$上を動く点$\mathrm{Q}$との距離が最小となるとき,点$\mathrm{P}$の座標を$k$の式で表すと$[ ]$である.このときの直線$\mathrm{PQ}$と曲線$C$とで囲まれる部分の面積が最小になる$k$の値を求めると,$k=[ ]$である.
東北工業大学 私立 東北工業大学 2012年 第2問
次の問いに答えよ.

(1)先生$2$人と生徒$4$人の合計$6$人が円形のテーブルに向かって座るとき,先生$2$人が隣り合うような座り方は全部で$[][]$通りある.
(2)赤球と白球が$3$個ずつ入っている袋から同時に$3$個の球を取りだすとき,赤球$2$個,白球$1$個である確率は$\displaystyle \frac{[][]}{20}$である.
(3)$2$つのベクトルを$\overrightarrow{a}=(\sqrt{3},\ 7)$,$\overrightarrow{b}=(-\sqrt{3},\ 1)$とし,$t$は実数とする.$\overrightarrow{a}+t \overrightarrow{b}$の大きさは$t=-[][]$のとき最小となり,最小値は$[][] \sqrt{3}$である.
(4)$n$を自然数とする.初項が$-2$,公差が$\displaystyle \frac{1}{12}$の等差数列の初項から第$n$項までの和を$S_n$とおくとき,$S_{24}=-[][]$である.
成城大学 私立 成城大学 2012年 第1問
あるゲームでは,確率$p$で表が出るコインを$3$回投げる.表が$3$回出れば$15$円,ちょうど$2$回出れば$3$円,$1$回だけ出れば$1$円,$1$回も出なければ$6$円それぞれ支払わなければならない.

(1)支払額の期待値を$p$の関数として表せ.
(2)支払額の期待値を最小にするような$p$の値とそのときの期待値を求めよ.
昭和大学 私立 昭和大学 2012年 第5問
数列$\{a_n\} (n \geqq 1)$の初項から第$n$項までの和$S_n$が$S_n=2n^3-49n^2+409n-351$で与えられている.以下の各問に答えよ.

(1)$a_1,\ a_2$の値を求めよ.
(2)$a_n (n \geqq 2)$を$n$の式で表せ.
(3)$\{a_n\} (n \geqq 1)$のうちで,$a_n$の値が最小となる$n$と,そのときの$a_n$の値を求めよ.
獨協大学 私立 獨協大学 2012年 第3問
放物線$y=-x^2+1$上の点$(\alpha,\ -\alpha^2+1)$における接線を$\ell_1$とし,点$(\beta,\ -\beta^2+1)$における接線を$\ell_2$とする.ただし,$\alpha<0<\beta$で$\beta-\alpha=c$(一定)とする.

(1)接線$\ell_1$と$y$軸および放物線で囲まれる部分の面積$S_1$を$\alpha$で表せ.
(2)接線$\ell_2$と$y$軸および放物線で囲まれる部分の面積$S_2$を$\beta$で表せ.
(3)面積の和$S_1+S_2$が最小となるときの$\alpha,\ \beta$とそのときの最小値を$c$で表せ.
獨協大学 私立 獨協大学 2012年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)${(2x+3y)}^3+{(2x-3y)}^3$を展開すると$[$1$]$になる.
(2)$-1<a<0<b<c$とするとき,
\[ -\frac{a}{c},\ \frac{a}{c},\ \frac{1}{ac},\ -\frac{1}{ab},\ -\frac{1}{ac} \]
の$5$つの数のうち,小さい方から$2$番目の数は$[$2$]$であり$4$番目の数は$[$3$]$である.
(3)$\displaystyle \frac{\pi}{2} \leqq \theta<\frac{3\pi}{2}$のときに
\[ 2 \sin^3 \theta-\sin \theta=0 \]
の解をすべて記すと$[$4$]$である.
(4)$a,\ b$を定数とする$x$に関する$3$次方程式
\[ 2x^3+ax^2+bx-10=0 \]
の$2$つの解が$x=1,\ 2$であるとき,$a=[$5$]$,$b=[$6$]$であり,もう$1$つの解は$[$7$]$である.
(5)$\mathrm{P}$,$\mathrm{E}$,$\mathrm{N}$,$\mathrm{C}$,$\mathrm{I}$,$\mathrm{L}$の文字が$1$つずつ刻まれているタイルが$6$枚ある.これらを横$1$列に並べるとき,$\mathrm{P}$が$\mathrm{E}$より左で,かつ,$\mathrm{N}$が$\mathrm{E}$より右となる確率は$[$8$]$である.
(6)$a$を定数とする方程式$x^3-6x^2-a=0$の異なる実数解は,$a$の値が$[$9$]$の場合には$3$個,$[$10$]$または$[$11$]$の場合には$2$個,$[$12$]$または$[$13$]$の場合には$1$個,それぞれ存在する.
(7)$\alpha$を実数として,空間における原点$\mathrm{O}$と$2$点$\mathrm{A}(-1,\ \alpha,\ \alpha)$,$\mathrm{B}(1,\ 2,\ \alpha)$を考える.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を最小にする$\alpha$の値は$[$14$]$であり,このとき,三角形$\mathrm{OAB}$の面積は$[$15$]$である.
(8)点$\mathrm{O}$を中心とする半径$1$の円の円周上に点$\mathrm{A}$をとり,点$\mathrm{A}$における接線上に$\mathrm{AB}=2$となる点$\mathrm{B}$をとる.次に,点$\mathrm{B}$から$\mathrm{BC}=2$となるように円周上に点$\mathrm{A}$とは異なる点$\mathrm{C}$をとる.このとき,三角形$\mathrm{OAC}$の面積は$[$16$]$であり,$\sin \angle \mathrm{CAB}=[$17$]$である.
(図は省略)
近畿大学 私立 近畿大学 2012年 第2問
$\angle \mathrm{A}={30}^\circ$,$\mathrm{AB}=\mathrm{AC}=4$をみたす$\triangle \mathrm{ABC}$において,点$\mathrm{C}$を点$\mathrm{P}_1$として,$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_1$,辺$\mathrm{AC}$上に点$\mathrm{P}_2$をとる.次に,図のように,$\triangle \mathrm{P}_2 \mathrm{Q}_2 \mathrm{P}_3$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_2$,辺$\mathrm{AC}$上に点$\mathrm{P}_3$をとる.以下同様にして,$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_n$,辺$\mathrm{AC}$上に点$\mathrm{P}_{n+1}$をとる.($n=1,\ 2,\ 3,\ \cdots$)
(図は省略)

$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$の面積を$S_n$,$\triangle \mathrm{Q}_n \mathrm{P}_{n+1} \mathrm{Q}_{n+1}$の面積を$T_n$とする.

(1)$\mathrm{BC}$と$\mathrm{P}_1 \mathrm{P}_2$の長さを,二重根号を用いない形で求めよ.
(2)$S_1,\ T_1$の値を求めよ.
(3)$S_n$を$n$を用いて表せ.また,$\displaystyle S_n<\frac{1}{1000}$をみたす最小の$n$の値を求めよ.
(4)$T_n$を$n$を用いて表せ.また,和$\displaystyle \sum_{n=1}^5 T_n$の値を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。