タグ「最小」の検索結果

33ページ目:全521問中321問~330問を表示)
名古屋市立大学 公立 名古屋市立大学 2013年 第3問
曲線$\displaystyle y=\frac{x^2}{2}$(ただし,$x \leqq 0$)上に点$\displaystyle \mathrm{P} \left( a,\ \frac{a^2}{2} \right)$を,曲線$y=x^2$(ただし,$x \geqq 0$)上に点$\mathrm{Q}(b,\ b^2)$をとる.$\mathrm{P}$および$\mathrm{Q}$における接線をそれぞれ$\ell,\ m$とする.$\ell$と$m$の交点を$\mathrm{R}$とし,$\theta=\angle \mathrm{PRQ}$とする.$2b-a=4$のとき,次の問いに答えよ.

(1)$\theta$を直角にする$a$の値を求めよ.
(2)$\theta$が直角でないとき,$\tan \theta$を$a$で表せ.
(3)$\theta$が最大および最小となる$a$の値をそれぞれ求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
$xy$平面上の$3$点$\mathrm{A}(a,\ b)$,$\mathrm{B}(-b,\ a)$,$\mathrm{C}(a^2-b^2,\ 4ab)$を考える.ただし,$a,\ b$はそれぞれ$a>0$,$b>0$,$a+b=1$を満たす任意の実数である.次の問いに答えよ.

(1)$a,\ b$が条件を満たしながら動くとき,点$\mathrm{C}$が描く図形を図で示せ.
(2)$\angle \mathrm{ACB}=\theta$とおくとき,$\theta$を最小にする$a$の値を求めよ.
(3)三角形$\mathrm{ABC}$の面積を最大にする$a$の値を求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第3問
$k$を$0<k<1$の範囲の定数とする.直線$\ell:y=kx$と曲線$C:y=|x^2-2x|$について以下の各問に答えよ.

(1)直線$\ell$と曲線$C$の交点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を求めよ.ただし,$0<x_1<x_2$とする.
(2)原点を$\mathrm{O}$として,線分$\mathrm{OP}_1$と曲線$C$で囲まれる部分の面積を$S_1$,線分$\mathrm{P}_1 \mathrm{P}_2$と曲線$C$で囲まれる部分の面積を$S_2$とする.このとき,$S_1$と$S_2$をそれぞれ$k$の関数で表せ.
(3)$S=S_1+S_2$とする.このとき,$S$が最小となる$k$の値を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第1問
座標平面上の点$\mathrm{A}(1,\ 0)$と曲線$C:y=x \sqrt{x}$を考える(ただし$x \geqq 0$とする).曲線$C$上の点のうち,点$\mathrm{A}$までの距離が最小となるような点を$\mathrm{P}$とし,点$\mathrm{P}$における曲線$C$の接線と$x$軸との交点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の$x$座標を求めよ.
(2)点$\mathrm{Q}$の$x$座標を求めよ.
(3)曲線$C$と$x$軸および線分$\mathrm{PQ}$で囲まれた図形を$x$軸のまわりに$1$回転させた回転体の体積を$V_1$とする.また,曲線$C$と$x$軸および線分$\mathrm{AP}$で囲まれた図形を$x$軸のまわりに$1$回転させた回転体の体積を$V_2$とする.このとき$\displaystyle \frac{V_2}{V_1}$の値を求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第1問
初項$a_1=0$,漸化式$a_{n+1}=a_n+2n-15$で与えられる数列$\{a_n\}$を考える.また,数列$\{a_n\}$の第$1$項から第$n$項までの和を$S_n$とする.以下の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$a_n>0$を満たす最小の$n$を求めよ.
(3)数列$\{S_n\}$の一般項を求めよ.
(4)$S_n>a_n$を満たす最小の$n$を求めよ.
(5)数列$\{T_n\}$の一般項を$T_n=S_n-n \cdot a_n$によって定める.$T_n$が,ある数列$\{b_n\}$の第$1$項から第$n$項までの和となるとする.その数列$\{b_n\}$の一般項を求めよ.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
尾道市立大学 公立 尾道市立大学 2013年 第3問
$f(x)$を変数$x$の$2$次関数,$F(x)$を$f(x)$の原始関数とする(つまり$F^\prime(x)=f(x)$である).また$f(x)$と$F(x)$は次の関係を満たすとする.
\[ 3xF(x)-f(x)^2=x^3-7x^2-12x-9 \]
このとき,次の問いに答えなさい.

(1)$f(x)$を求めなさい.
(2)定積分$\displaystyle \int_a^{a+1} f(x) \, dx$の値が最小となる実数$a$と,そのときの定積分の値を求めなさい.
千葉大学 国立 千葉大学 2012年 第2問
$\mathrm{AB}=5,\ \mathrm{BC}=7,\ \mathrm{CA}=8$および$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=t$を満たす四面体$\mathrm{OABC}$がある.

(1)$\angle \mathrm{BAC}$を求めよ.
(2)$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(3)$4$つの頂点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一球面上にあるとき,その球の半径が最小になるような実数$t$の値を求めよ.
横浜国立大学 国立 横浜国立大学 2012年 第5問
鋭角三角形$\mathrm{ABC}$の$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$\alpha,\ \beta,\ \gamma$で表す.点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$はそれぞれ辺$\mathrm{CA}$,$\mathrm{AB}$,$\mathrm{BC}$上にあり,$\mathrm{DE} \perp \mathrm{AB},\ \mathrm{EF} \perp \mathrm{BC},\ \mathrm{FD} \perp \mathrm{CA}$を満たす.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$は相似であることを示せ.
(2)$\displaystyle \frac{\mathrm{BC}}{\mathrm{EF}}= \frac{1}{\tan \alpha}+\frac{1}{\tan \beta}+\frac{1}{\tan \gamma}$を示せ.
(3)$\alpha$が一定のとき,$\displaystyle \frac{\mathrm{BC}}{\mathrm{EF}}$を最小にするような$\beta,\ \gamma$を$\alpha$で表せ.
横浜国立大学 国立 横浜国立大学 2012年 第1問
$xy$平面上に$n$個の点P$_k(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots,\ n)$がある.
\[ a=\sum_{k=1}^n x_k^2, \quad b=\sum_{k=1}^n y_k^2, \quad c= \sum_{k=1}^n x_ky_k \]
とおく.さらに,P$_k$と直線$\ell: x\cos \theta + y\sin \theta = 0$の距離を$d_k$とし,
\[ L = \sum_{k=1}^n d_k^2 \]
とおく.次の問いに答えよ.

(1)$L$を$a,\ b,\ c,\ \theta$を用いて表せ.
(2)$\theta$が$0 \leqq \theta < \pi$の範囲を動くとき,$L$の最大値と最小値を$a,\ b,\ c$を用いて表せ.
(3)$a \neq b$または$c \neq 0$のとき,$L$を最大にする$\ell$を$\ell_1$,最小にする$\ell$を$\ell_2$とする.$\ell_1$と$\ell_2$は直交することを示せ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。