タグ「最小」の検索結果

31ページ目:全521問中301問~310問を表示)
千葉工業大学 私立 千葉工業大学 2013年 第3問
次の各問に答えよ.

(1)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{3a_n}{2n \cdot a_n+3} (n=1,\ 2,\ 3,\ \cdots)$で定められている.$\displaystyle b_n=\frac{1}{a_n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,$b_1=[ア]$,$\displaystyle b_{n+1}-b_n=\frac{[イ]}{[ウ]}n$が成り立つ.$\displaystyle a_{10}=\frac{[エ]}{[オカ]}$であり,$\displaystyle a_n<\frac{1}{50}$をみたす最小の$n$は$[キク]$である.
(2)平行四辺形$\mathrm{OABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$とし,線分$\mathrm{CD}$を$3:4$に内分する点を$\mathrm{E}$とするとき,
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OC}},\quad \overrightarrow{\mathrm{OE}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OC}} \]
である.直線$\mathrm{OE}$と辺$\mathrm{BC}$との交点を$\mathrm{F}$とするとき,
\[ \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}} \]
であり,三角形$\mathrm{CEF}$の面積は平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{[チ]}{[ツテ]}$倍である.
北里大学 私立 北里大学 2013年 第1問
$2$つの関数$f(x)=x^3-6x^2+9x+1$と$g(x)=|-x^2+6x-3|-2$がある.

(1)関数$f(x)$は,極大値$[ア]$,極小値$[イ]$をとる.
(2)関数$y=g(x)$のグラフと直線$x+y=k$が異なる$4$個の共有点をもつ.このとき,実数$k$のとり得る値の範囲は,$[ウ]<k<[エ]$である.
(3)方程式$f(x)=g(x)$の解のうち,最小のものは$x=[オ]$であり,最大のものは$x=[カ]$である.
北里大学 私立 北里大学 2013年 第5問
$a,\ b$を$a^2b^3=64$を満たす正の実数とする.

(1)$(\log_2a)^2+\log_2b$の値が最小となるときの$a,\ b$の値は$a=[ツ]$,$b=[テ]$である.
(2)$c=b^{\log_2a+1}$とおく.$\log_2a=t$とおくとき,$\log_2c$は$t$を用いて$\log_2c=[ト]$と表される.$t$の関数$f(t)$を$f(t)=[ト]$と定めるとき,関数$f(t)$の最大値は$[ナ]$である.
(3)$k,\ l$を$0<k<1<l$を満たす実数とする.$(2)$で定めた関数$f(t)$の定義域を$k \leqq t \leqq l$としたとき,値域は$k \leqq f(t) \leqq l$になった.このとき,$k,\ l$の値は,$k=[ニ]$,$l=[ヌ]$である.
東京薬科大学 私立 東京薬科大学 2013年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の下で,関数$f(\theta)=-\sin 2\theta+\sqrt{2}(\sin \theta+\cos \theta)$を考える.

(1)$t=\sin \theta+\cos \theta$とおくとき,$t$の取り得る値の範囲は$[$*$チ] \leqq t \leqq \sqrt{[ツ]}$である.
(2)$f(\theta)$を$t$の式で表すと,$[$*$テ]t^2+\sqrt{[ト]}t+[$*$ナ]$となる.
(3)$f(\theta)$が最大になるのは$\displaystyle \theta=\frac{[$*$ニ]}{[ヌネ]}\pi$のときで,最大値は$\displaystyle \frac{[ノ]}{[ハ]}$である.最小になるのは$\displaystyle \theta=\frac{[$*$ヒ]}{[フ]} \pi$のときで,最小値は$-\sqrt{[ヘ]}$である.
東京薬科大学 私立 東京薬科大学 2013年 第5問
$a$は実数の定数で,$0<a \leqq 1$とする.$2$次関数$f(x)=x^2-ax+b$が
\[ \int_0^1 f(x) \, dx=0 \]
を満たすとき,次の各問に答えよ.

(1)$a$と$b$の関係式を求めると,$\displaystyle b=\frac{[$*$け]}{[こ]}a+\frac{[$*$さ]}{[し]}$となる.
(2)実数$k$が$\displaystyle \int_1^2 f(x) \, dx=k \int_{-1}^0 f(x) \, dx$を満たすとき,$k$の最小値は$[$*$す]$である.$k$が最小であるとき,$y=f(x)$の接線で傾きが$1$のものは$\displaystyle y=x+\frac{[$*$せ]}{[そ]}$である.
(3)$f(x)$の$0 \leqq x \leqq 1$における最大値と最小値を$a$の式で表したものをそれぞれ$M(a)$,$m(a)$と記すと,
\[ M(a)=\frac{[$*$た]}{[ち]} a+\frac{[$*$つ]}{[て]},\quad m(a)=\frac{[$*$と]}{[な]} a^2+\frac{[$*$に]}{[ぬ]}a+\frac{[$*$ね]}{[の]} \]
となる.
(4)最大値と最小値の差$M(a)-m(a)$の最小値は$\displaystyle \frac{[は]}{[ひ]}$である.
京都女子大学 私立 京都女子大学 2013年 第3問
下の図のように,$\mathrm{AB}=2$,$\mathrm{AD}=6$,$\mathrm{AE}=1$である直方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.点$\mathrm{P}$は辺$\mathrm{FG}$上にあり,$\mathrm{EP}$の長さと$\mathrm{PC}$の長さの和が最小となるような点とする.次の問に答えよ.
(図は省略)

(1)$\triangle \mathrm{AFG}$の面積を求めよ.
(2)$\mathrm{FP}$の長さを求めよ.
(3)$\triangle \mathrm{APC}$の面積を求めよ.
同志社大学 私立 同志社大学 2013年 第4問
$xy$平面において,曲線$C:y=\log x$上に$2$点$\mathrm{A}(a,\ \log a)$と$\mathrm{B}(a+h,\ \log (a+h))$ $(h \neq 0)$をとる.点$\mathrm{A}$における$C$の法線と点$\mathrm{B}$における$C$の法線の交点を$\mathrm{D}(\alpha,\ \beta)$とする.次の問いに答えよ.

(1)点$\mathrm{A}$における法線の方程式を求めよ.
(2)$\alpha$と$\beta$をそれぞれ$a$と$h$を用いて表せ.
(3)$\displaystyle p=\lim_{h \to 0} \alpha$と$\displaystyle q=\lim_{h \to 0} \beta$とする.$p$と$q$をそれぞれ$a$を用いて表せ.
(4)点$\mathrm{E}$の座標を$(p,\ q)$とする.線分$\mathrm{AE}$の長さを最小にする$a$の値と,そのときの線分$\mathrm{AE}$の長さを求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第1問
$e$を自然対数の底,$b$を実数として,数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が条件$①$および$②$を満たしているとき,次の問いに答えなさい.

$\displaystyle a_1=\frac{e-e^2+b}{1-e} \qquad \cdots\cdots①$
$a_{n+1}=ea_n+b \qquad\quad\!\;\!\!\, \cdots\cdots②$

(1)$b=11$のとき,$a_n$を$n$の式で表すと,$a_n=[$1$]$となる.また,
\[ \sum_{k=1}^n \log_e \left( a_k+\frac{11}{e-1} \right)=[$2$] \]
となる.
(2)$b=e^{11}$のとき,$\displaystyle \sum_{k=1}^n a_k$の値は$n=[$3$]$のとき最小となる.
大同大学 私立 大同大学 2013年 第4問
$0<a<2$とする.$x \geqq 0$のとき$f(x)=x^3$,$x<0$のとき$f(x)=x^2+2x$とする.

(1)曲線$y=f(x)$と直線$y=ax$の交点の$x$座標を求めよ.
(2)曲線$y=f(x) (x \geqq 0)$と直線$y=ax$で囲まれる部分の面積$S(a)$を求めよ.
(3)曲線$y=f(x)$と直線$y=ax$で囲まれる$2$つの部分の面積の和$T(a)$を求めよ.
(4)$T(a)$を最小にする$a$の値を求めよ.
津田塾大学 私立 津田塾大学 2013年 第2問
放物線$C:y=x^2$と点$\mathrm{P}(0,\ t)$を考える.ただし,$t$は正の実数である.$C$上の点の中で点$\mathrm{P}$との距離が最小となる点を$\mathrm{Q}$とする.

(1)$f(t)=\mathrm{PQ}^2$とするとき,関数$f(t)$のグラフをかけ.
(2)点$\mathrm{P}$を中心とし点$\mathrm{Q}$を通る円と,$C$との共有点の数を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。