タグ「最小」の検索結果

29ページ目:全521問中281問~290問を表示)
愛媛大学 国立 愛媛大学 2013年 第4問
行列$\left( \begin{array}{cc}
\displaystyle\frac{5}{2} & -\displaystyle\frac{1}{4} \\
a & b
\end{array} \right)$で表される$1$次変換を$f$とする.$f$は$3$点$\mathrm{A}(1,\ m)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(m,\ -1)$に対して,次の$2$つの条件$①,\ ②$を満たすものとする.ただし,$\mathrm{O}$は原点である.

$①$ $\mathrm{A}$の$f$による像は$\mathrm{A}$自身である
$②$ $\mathrm{B}$の$f$による像を$\mathrm{B}^\prime$とすると,$\overrightarrow{\mathrm{BB^\prime}}$と$\overrightarrow{\mathrm{OC}}$は垂直である


(1)$a,\ b,\ m$の値を求めよ.
(2)$\mathrm{P}(x,\ y)$を任意の点とし,$\mathrm{P}$の$f$による像を$\mathrm{P}^\prime$とする.$\overrightarrow{\mathrm{PP^\prime}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(3)点$\mathrm{Q}(t,\ t^2-1)$の$f$による像を$\mathrm{Q}^\prime$とする.$|\overrightarrow{\mathrm{QQ^\prime}}|$の値が最小となる実数$t$の値を求めよ.
和歌山大学 国立 和歌山大学 2013年 第4問
曲線$C:y=xe^{-x^2}$上の点$(t,\ te^{-t^2})$における接線を$\ell$とする.$t>1$の範囲で$\ell$と$x$軸の交点の$x$座標を最小にするような$t$を$t_0$とし,そのときの$\ell$を$\ell_0$とする.このとき,次の問いに答えよ.

(1)$t_0$を求めよ.
(2)$0<x<t_0$の範囲で$C$は上に凸であることを示せ.
(3)$C$と$\ell_0$と$y$軸で囲まれる部分の面積を求めよ.
鳥取大学 国立 鳥取大学 2013年 第4問
自然数の数列$\{a_n\}$の隣り合う$2$項に次の関係式が成り立つ.
\[ \frac{a_{n+1}}{{a_n}^2}=3^n \quad (n=1,\ 2,\ \cdots) \]
また,$a_1=1$である.このとき,次の問いに答えよ.

(1)$b_n=\log_3 a_n$とおくとき,$b_n$を$n$の式で表せ.
(2)$a_n \geqq 10^{100}$となる最小の$n$を求めよ.ただし,$\log_{10}3=0.4771$とする.
香川大学 国立 香川大学 2013年 第2問
数列$\{a_n\}$を次のように定める.
\[ a_1=2,\quad \left\{ \begin{array}{ll}
a_n<100 \text{のとき,} & a_{n+1}=a_n+3 \\
a_n \geqq 100 \text{のとき,} & a_{n+1}=a_n-100
\end{array} \right. \]
このとき,次の問に答えよ.

(1)$a_n>a_{n+1}$を満たす最小の自然数$n$を$m$とおく.$m,\ a_{m}$および$\displaystyle \sum_{k=1}^m a_k$を求めよ.
(2)$a_{105}$および$\displaystyle \sum_{k=1}^{105} a_k$を求めよ.
香川大学 国立 香川大学 2013年 第2問
数列$\{a_n\}$を次のように定める.
\[ a_1=2,\quad \left\{ \begin{array}{ll}
a_n<100 \text{のとき,} & a_{n+1}=a_n+3 \\
a_n \geqq 100 \text{のとき,} & a_{n+1}=a_n-100
\end{array} \right. \]
このとき,次の問に答えよ.

(1)$a_n>a_{n+1}$を満たす最小の自然数$n$を$m$とおく.$m,\ a_{m}$および$\displaystyle \sum_{k=1}^m a_k$を求めよ.
(2)$a_{105}$および$\displaystyle \sum_{k=1}^{105} a_k$を求めよ.
東北学院大学 私立 東北学院大学 2013年 第1問
次の各問題の$[ ]$に適する答えを記入せよ.

(1)$\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}$を簡単にすると$[ア]$となる.
(2)$(0.98)^n<0.5$となる最小の整数$n$は$[イ]$である.ただし$\log_{10}2=0.3010$,$\log_{10}7=0.8451$とする.
(3)和$\displaystyle \frac{1}{2 \cdot 5}+\frac{1}{5 \cdot 8}+\frac{1}{8 \cdot 11}+\cdots+\frac{1}{(3n-1)(3n+2)}$を求めると$[ウ]$となる.
甲南大学 私立 甲南大学 2013年 第3問
$xy$平面において,点$(2,\ 0)$を点$(1,\ \sqrt{3})$へ,点$(1,\ \sqrt{3})$を点$(-1,\ \sqrt{3})$へ移す$1$次変換$f$を表す行列を$A$とする.$\displaystyle B=\frac{1}{\sqrt{2}} \left( \begin{array}{rr}
1 & -1 \\
1 & 1
\end{array} \right)$とし,$B$が表す$1$次変換を$g$とする.このとき,以下の問いに答えよ.

(1)$A$および$A^3$を求めよ.
(2)$A^6$が表す$1$次変換によって点$(1,\ 0)$が移る点の座標を求めよ.
(3)合成変換$f \circ g$を表す行列を$C$とするとき,$C^n=\left( \begin{array}{rr}
1 & 0 \\
0 & 1
\end{array} \right)$となる最小の自然数$n$の値を求めよ.
福岡大学 私立 福岡大学 2013年 第3問
第$2$項が$\displaystyle \frac{3}{4}$,第$5$項が$48$であるような等比数列の一般項を求めると$a_n=[ ]$である.また,初項から第$n$項までの和を$S_n$とするとき,$16S_n+1 \geqq 10000$となる最小の整数$n$を求めると$n=[ ]$である.
西南学院大学 私立 西南学院大学 2013年 第4問
単位円上の点$\mathrm{P}(x,\ y)$を考える.動径$\mathrm{OP}$と$x$軸のなす角を$\theta (0^\circ \leqq \theta < 360^\circ)$とする.以下の問に答えよ.

(1)$\theta=135^\circ$のとき
\[ \mathrm{P} \left( -\frac{\sqrt{[ハ]}}{[ヒ]},\ \frac{\sqrt{[フ]}}{[ヘ]} \right) \]
である.
(2)$4y+3x$が最小となるとき,その値は$[ホマ]$であり,
\[ \mathrm{P} \left( -\frac{[ミ]}{[ム]},\ -\frac{[メ]}{[モ]} \right) \]
である.
日本女子大学 私立 日本女子大学 2013年 第3問
曲線$y=-(x-1)(x+1)^2$を$C$とし,曲線$C$が$y$軸と交わる点を$\mathrm{A}$,$x$軸と交わる点のうち接点でない方を$\mathrm{B}$とする.点$\mathrm{P}$は曲線$C$上にあって,点$\mathrm{A}$と点$\mathrm{B}$の間を動く点とし,その$x$座標を$t$とおく.また,原点を$\mathrm{O}$とおく.

(1)四角形$\mathrm{OBPA}$の面積を$t$の式で表せ.
(2)曲線$C$と線分$\mathrm{AP}$とで囲まれた図形の面積を$S_1$,曲線$C$と線分$\mathrm{PB}$とで囲まれた図形の面積を$S_2$とする.面積の和$S_1+S_2$を最小にする$t$の値を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。