タグ「最小」の検索結果

28ページ目:全521問中271問~280問を表示)
福井大学 国立 福井大学 2013年 第1問
関数$f(x)$を$f(x)=x \sin x$とおく.また,曲線$y=f(x)$上の点$(\alpha,\ f(\alpha))$における接線の方程式を$y=g(x)$とおく.$\alpha>0$のとき,以下の問いに答えよ.

(1)$g(x)$を$\alpha$を用いて表せ.
(2)直線$y=g(x)$が原点を通るような最小の$\alpha$を$\alpha_1$とし,$\alpha=\alpha_1$のときの$g(x)$を$h(x)$とおく.$\alpha_1$の値と$h(x)$を求めよ.
(3)$0 \leqq x \leqq \alpha_1$において$h(x) \geqq f(x)$であることを示せ.
(4)$0 \leqq x \leqq \alpha_1$において直線$y=h(x)$と曲線$y=f(x)$で囲まれてできる図形の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第3問
数列$\{a_n\}$を次のように定める.
\[ a_1=a_2=a_3=1,\quad a_{n+3}=a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_{n+1} \leqq a_{n+2} \leqq 2a_n$を示せ.
(2)$a_n \leqq \sqrt{2^n}$を示せ.
さらに,数列$\{b_n\}$を
\[ b_n=\left\{ \begin{array}{ll}
0 & a_n \ \text{が偶数のとき} \\
1 & a_n \ \text{が奇数のとき}
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.また,自然数$k$に対して,条件
\[ p_k \ \text{:すべての自然数} \ n \ \text{について} \ b_{n+k}=b_n \ \text{が成り立つ} \]
を考える.以下の問いに答えよ.
(3)条件$p_k$を満たす最小の自然数$k$を求めよ.
(4)$p,\ q,\ r$を整数とし,数列$\{a_n\}$の$a_1,\ a_2,\ a_3$を$a_1=p,\ a_2=q,\ a_3=r$に置き換え,数列$\{b_n\}$もそれにあわせて置き換える.$p,\ q,\ r$をどのように選んでも,条件$p_k$を満たす自然数$k$が存在することを示せ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2013年 第3問
$-\infty<x<\infty$で定義される$2$つの関数$f(x)=|\cos x|\sin x$,$g(x)=e^{-x}f(x)$について,以下の問に答えよ.

(1)$y=f(x)$のグラフを描け.ただし,$x$の範囲は,$0 \leqq x \leqq 4\pi$とせよ.
(2)すべての$x$に対し,$f(x)=f(x+T)$を満たす正の数$T$のうち,最小の値$\omega$を求めよ.
(3)$\displaystyle \int_0^{\frac{\pi}{2}} g(x) \, dx$を求めよ.
(4)極限値$\displaystyle \lim_{n \to \infty}\int_0^{n \omega}g(x) \, dx$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$-1<x<1$で定義される関数$f(x)=2x+\sqrt{5-5x^2}$について,座標平面上の曲線$C:y=f(x)$を考える.このとき,次の各問に答えよ.

(1)曲線$C$は上に凸であることを示し,$f(x)$の最大値を求めよ.
(2)曲線$C$上の点のうち,原点$\mathrm{O}$との距離が最大となる点を$\mathrm{A}$,最小となる点を$\mathrm{B}$とするとき,$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めよ.
(3)(2)で求めた点$\mathrm{A}$,$\mathrm{B}$について,線分$\mathrm{OA}$,線分$\mathrm{OB}$,および曲線$C$で囲まれる部分の面積を求めよ.
愛媛大学 国立 愛媛大学 2013年 第2問
行列$\left( \begin{array}{cc}
\displaystyle\frac{5}{2} & -\displaystyle\frac{1}{4} \\
a & b
\end{array} \right)$で表される$1$次変換を$f$とする.$f$は$3$点$\mathrm{A}(1,\ m)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(m,\ -1)$に対して,次の$2$つの条件$①,\ ②$を満たすものとする.ただし,$\mathrm{O}$は原点である.

$①$ $\mathrm{A}$の$f$による像は$\mathrm{A}$自身である
$②$ $\mathrm{B}$の$f$による像を$\mathrm{B}^\prime$とすると,$\overrightarrow{\mathrm{BB^\prime}}$と$\overrightarrow{\mathrm{OC}}$は垂直である


(1)$a,\ b,\ m$の値を求めよ.
(2)$\mathrm{P}(x,\ y)$を任意の点とし,$\mathrm{P}$の$f$による像を$\mathrm{P}^\prime$とする.$\overrightarrow{\mathrm{PP^\prime}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(3)点$\mathrm{Q}(t,\ t^2-1)$の$f$による像を$\mathrm{Q}^\prime$とする.$|\overrightarrow{\mathrm{QQ^\prime}}|$の値が最小となる実数$t$の値を求めよ.
長崎大学 国立 長崎大学 2013年 第7問
半径$1$の円と長さ$2$の線分がある.この線分の一方の端点を,円の中心に合わせて円上に固定した図形を考える.線分の端点で,円の中心とは異なるものを$\mathrm{P}$とする.この図形を下の図$1$のように$xy$平面上に置く.すなわち,中心が点$(0,\ 1)$,$\mathrm{P}$が点$(0,\ -1)$と一致するように置く.次に,$x$軸上で正の方向に,すべらないように円を半回転させる.下の図$2$は円が$\theta$だけ回転したときの状態を表している.$0 \leqq \theta \leqq \pi$の範囲で,点$\mathrm{P}$が描く曲線$C$について考察する.次の問いに答えよ.
(図は省略)

(1)図$2$における点$\mathrm{P}$の$x$座標と$y$座標を,それぞれ$\theta$を用いて表せ.
(2)曲線$C$上にあって,$x$座標が最小となる点,最大となる点,$y$座標が最小となる点,最大となる点について,それぞれの座標を求めよ.
(3)曲線$C$と$2$直線$y=-1$および$x=\pi$によって囲まれた図形の面積$S$を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第2問
関数$f(x)$を$\displaystyle f(x)=\int_0^1 (1-t)\{ a(x-t)+b\} \, dt$で定めるとき,次の問に答えよ.

(1)$f(x)$を$a,\ b,\ x$で表せ.
(2)直線$y=ax+b$が点$(1,\ 1)$を通るとき,$\displaystyle \int_0^1 \{f(x)\}^2 \, dx$を最小にする$a$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第4問
数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=27^{n^2-3n-9}a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.このとき,次の問に答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$a_n$の値が最小となるときの$n$の値を求めよ.
島根大学 国立 島根大学 2013年 第2問
数列$\{a_n\},\ \{b_n\}$を,$\displaystyle a_1=1,\ b_1=0,\ a_{n+1}=\frac{1}{4}a_n-\frac{\sqrt{3}}{4}b_n,\ b_{n+1}=\frac{\sqrt{3}}{4}a_n+\frac{1}{4}b_n$によって定め,座標が$(a_n,\ b_n)$である点を$\mathrm{C}_n$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}_n}$の大きさ$|\overrightarrow{\mathrm{OC}_n}|$を,$n$を用いて表せ.
(2)$\overrightarrow{\mathrm{OC}_n}$と$\overrightarrow{\mathrm{OC}_{n+1}}$のなす角を求めよ.
(3)$S_n$を$\triangle \mathrm{OC}_n \mathrm{C}_{n+1}$の面積とするとき,$\displaystyle S_n \leqq \frac{1}{2^{2013}}$をみたす最小の自然数$n$を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。