タグ「最小」の検索結果

25ページ目:全521問中241問~250問を表示)
兵庫県立大学 公立 兵庫県立大学 2014年 第3問
関数$\displaystyle f(x)=2x+\frac{10}{x}-\log x$に対して$a_n=f(n) (n=1,\ 2,\ 3,\ \cdots)$で定められる数列$\{a_n\}$を考える.次の問いに答えよ.

(1)$\displaystyle \lim_{n \to \infty} (a_{n+1}-a_n)$を求めよ.
(2)$a_n$が最小となる$n$を求めよ.
釧路公立大学 公立 釧路公立大学 2014年 第4問
以下の各問に答えよ.

(1)年利率$r \, \%$,$1$年ごとの複利で$y$万円を預けると,$x$年後に元利合計は$y(1+0.01r)^x$万円となる.ただし,$r$は整数とする.このとき,以下の各問について別添の常用対数表(省略)を用いて答えよ.

(i) 年利率$2 \, \%$で$10$万円を預けると,元利合計が初めて$15$万円を超えるのは何年後か求めよ.
(ii) 元利合計が$10$年で預けた金額の倍以上になるような最小の$r$を求めよ.

(2)曲線:$y=x^3-5x^2+2x+8$がある.以下の各問に答えよ.

(i) 曲線と$x$軸との交点の座標をすべて求めよ.
(ii) 曲線と$y$軸との交点における曲線の接線の方程式を求めよ.
(iii) 曲線と$(2)$で求めた直線で囲まれる図形の面積を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2014年 第9問
数列$a_n=(50-2n)2^n (n=0,\ 1,\ 2,\ \cdots)$の初項から第$n$項までの和を$S_n$とする.$S_n<0$となる最小の$n$と,そのときの$S_n$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$xy$平面において,曲線$y=nx^2$($n$は自然数,$x \geqq 0$)を$C_n$とし,直線$y=1$を$L$とする.$2$つの曲線$C_n$,$C_{n+1}$および$L$で囲まれた図形の面積を$S_n$とする.次の問いに答えよ.

(1)$S_n$を求めよ.
(2)任意の$n$に対して$S_n>S_{n+1}$が成り立つことを示せ.
(3)$\displaystyle \sum_{k=1}^n S_k>\frac{1}{2}$となる最小の$n$を求めよ.
横浜市立大学 公立 横浜市立大学 2014年 第2問
次の問いに答えよ.

(1)次の各問いに答えよ.

\mon[(ア)] $\displaystyle \frac{8}{9}<\frac{q}{p}<\frac{9}{10}$をみたす自然数$p,\ q$における$p$の最小値を記せ.

\mon[(イ)] $\displaystyle \frac{2013}{2014}<\frac{q}{p}<\frac{2014}{2015}$をみたす自然数$p,\ q$における$p$の最小値を記せ.

(2)自然数$a,\ b,\ c,\ d$が$ad-bc=1$をみたすとき,次の各問いに答えよ.

\mon[(ア)] 自然数$p,\ q$が$dq-cp>0$,$ap-bq>0$をみたすとき,$p$の最小値および$p$が最小となるような$q$の値をそれぞれ$a,\ b,\ c,\ d$を用いて表せ.
\mon[(イ)] $\displaystyle \frac{c}{d}<\frac{q}{p}<\frac{a}{b}$をみたす自然数$p,\ q$で$p$が最小となるような分数$\displaystyle \frac{q}{p}$を考えることにより,$a+c$,$b+d$が互いに素であることを示せ.
\mon[(ウ)] $A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\ a+d=10$のとき,$(A+A^{-1})^3$の値を求めよ.
高崎経済大学 公立 高崎経済大学 2014年 第4問
数列$1,\ 1,\ 2,\ 1,\ 2,\ 4,\ 1,\ 2,\ 4,\ 8,\ 1,\ 2,\ 4,\ 8,\ 16,\ 1,\ 2,\ \cdots$の第$n$項を$a_n$とする.以下の各問に答えよ.

(1)$a_{50}$を求めよ.
(2)$\displaystyle \sum_{k=1}^{50} a_k$を求めよ.
(3)$a_m-a_{m+1}>99999$を満たす最小の自然数$m$の値を求めよ.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
県立広島大学 公立 県立広島大学 2014年 第3問
初項$3$,公比$2$の等比数列を$\{a_n\}$とし,
\[ S_n=\sum_{i=1}^n (\log_{a_i}2) \cdot (\log_{a_{i+1}}2) \quad (n=1,\ 2,\ 3,\ \cdots) \]
とする.次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.

(2)$\displaystyle \frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1}$が$x$についての恒等式になる定数$A,\ B$を求めよ.

(3)$S_n<\log_32$となることを示せ.
(4)$\displaystyle |S_n-\log_32|<\frac{1}{1000}$となる最小の$n$を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第2問
以下の問いの空欄$[タ]$~$[ノ]$に適する数値,式を記せ.

(1)$i$を虚数単位として,等式$(2+i)(x-3yi)=1-i$を満たす実数$x$および$y$の値を求めると$x=[タ]$,$y=[チ]$となる.
(2)平面上に$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(3,\ -1)$と直線$x-2y-2=0$がある.この直線上に点$\mathrm{P}$をとるとき,$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$([ツ],\ [テ])$となる.
(3)$0 \leqq \theta<2\pi$の条件で,関数$y=\cos 2\theta-4 \sin \theta$の最大値と最小値を求めると,$\theta=[ト]$のときに最大値$[ナ]$をとり,$\theta=[ニ]$のときに最小値$[ヌ]$をとる.
(4)不等式$9^x \leqq 6+3^x$の解は$[ネ]$である.
(5)$3$つの数$x-3,\ x+1,\ x+6$がこの順で等比数列となるとき,$x$の値を求めると$x=[ノ]$となる.
横浜国立大学 国立 横浜国立大学 2013年 第5問
関数$f(x)=e^{ax} \ (a>0)$と次の条件(ア),(イ)を満たす関数$g(x)$がある.

\mon[(ア)] $y=g(x)$のグラフは半円
\[ \left\{
\begin{array}{l}
(x-p)^2+(y-q)^2=r^2 \\
y<q
\end{array}
\right. \]
である.ただし,$p<0,\ q>0,\ r>|p|$とする.
\mon[(イ)] $f(0)=g(0),\ f^\prime(0)=g^\prime(0),\ f^{\prime\prime}(0)=g^{\prime\prime}(0)$

次の問いに答えよ.

(1)$p,\ q,\ r$を$a$を用いて表せ.
(2)$a$がすべての正の実数を動くとき,$r$を最小にする$a$の値を求めよ.
大阪大学 国立 大阪大学 2013年 第3問
曲線$y=x^2+x+4-|3x|$と直線$y=mx+4$で囲まれる部分の面積が最小となるように定数$m$の値を定めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。