タグ「最小」の検索結果

22ページ目:全521問中211問~220問を表示)
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄にあてはまる数または式を解答欄に記入せよ.

$\{a_n\}$を,初項$1$,公差$d$の等差数列とし,
\[ P_n=r^{a_1} \cdot r^{a_2} \cdot \cdots \cdot r^{a_n} \]
と定義する.ただし,$r$は$r>1$を満たす定数である.$P_n$が$P_3=P_9$を満たしているならば,公差$d=[ア]$である.このとき,$P_n$は,$n=[イ]$のとき,最大値$[ウ]$をとる.また,$P_n<1$となる最小の$n$は,$n=[エ]$である.
広島修道大学 私立 広島修道大学 2014年 第3問
直線$y=-x+5$を$\ell$とするとき,次の問に答えよ.

(1)曲線$y=x^3-3x^2+2x+4$上の点$\mathrm{P}$における接線が直線$\ell$であるとき,点$\mathrm{P}$の座標を求めよ.
(2)$b,\ c$を定数とする,放物線$y=x^2+bx+c$上の点$\mathrm{Q}$における接線が直線$\ell$であるとき,定数$c$の値が最小となるように点$\mathrm{Q}$の座標を定めよ.
津田塾大学 私立 津田塾大学 2014年 第1問
次の問に答えよ.

(1)$\mathrm{a}$,$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$,$\mathrm{d}$の$5$文字を$1$列に並べるとき,$\mathrm{a}$が隣り合わない並べ方は何通りあるか.
(2)${10}^{\frac{n}{77}}$が$5$より大きくなる最小の自然数$n$を求めよ.ただし$\log_{10}2=0.3010$とする.
(3)$\displaystyle 0<x<\frac{\pi}{3}$のとき,$\displaystyle \cos x+\cos \left( \frac{\pi}{3}-x \right)$の取りうる値の範囲を答えよ.
大阪薬科大学 私立 大阪薬科大学 2014年 第3問
次の問いに答えなさい.

辺$\mathrm{AB}$の長さが$1$の$\triangle \mathrm{OAB}$について,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$で表す.$n$を自然数とする.辺$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$の中点を$\mathrm{X}_1$,線分$\mathrm{AX}_1$の中点を$\mathrm{X}_2$,$\cdots$,線分$\mathrm{AX}_n$の中点を$\mathrm{X}_{n+1}$,$\cdots$とする.また,$\triangle \mathrm{OAX}_1$の重心を$\mathrm{P}_1$,$\triangle \mathrm{OAX}_2$の重心を$\mathrm{P}_2$,$\cdots$,$\triangle \mathrm{OAX}_n$の重心を$\mathrm{P}_n$,$\cdots$とする.同様に線分$\mathrm{BM}$の中点を$\mathrm{Y}_1$,線分$\mathrm{BY}_1$の中点を$\mathrm{Y}_2$,$\cdots$,線分$\mathrm{BY}_n$の中点を$\mathrm{Y}_{n+1}$,$\cdots$とし,$\triangle \mathrm{OBY}_1$の重心を$\mathrm{Q}_1$,$\triangle \mathrm{OBY}_2$の重心を$\mathrm{Q}_2$,$\cdots$,$\triangle \mathrm{OBY}_n$の重心を$\mathrm{Q}_n$,$\cdots$とする.

(1)$\overrightarrow{\mathrm{OX}_1}$と$\overrightarrow{\mathrm{P}_1 \mathrm{Q}_1}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OX}_1}=[$\mathrm{I]$}$,$\overrightarrow{\mathrm{P}_1 \mathrm{Q}_1}=[$\mathrm{J]$}$である.
(2)線分$\mathrm{AX}_n$の長さを$n$を用いて表すと,$\mathrm{AX}_n=[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{P}_n \mathrm{Q}_n}$は$n,\ \overrightarrow{a},\ \overrightarrow{b}$を用いてどのように表されるかを求めなさい.
(4)線分$\mathrm{P}_n \mathrm{Q}_n$の長さに関する不等式
\[ 0.666666<\mathrm{P}_n \mathrm{Q}_n \]
を満たす最小の自然数$n$は$[$\mathrm{L]$}$である.ただし,$\log_{2}10=3.3219$とする.
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄$[$1$]$から$[$6$]$にあてはまる数または数式を記入せよ.

(1)$3$次曲線$y=x^3-6x^2+11x-4$と直線$y=ax$が第$1$象限の相異なる$3$点で交わるような定数$a$の範囲は$[$1$]<a<[$2$]$である.
(2)硬貨を投げ,$3$回つづけて表が出たら終了する.$n$回以下で終了する場合の数を$f_n$とする.$f_{10}=[$3$]$である.
(3)不等式$\displaystyle \frac{a}{19}<\log_{10}7<\frac{b}{13}$を満たす最大の整数$a$と最小の整数$b$は$a=[$4$]$,$b=[$5$]$である.必要に応じて次の事実を用いてもよい.
\[ \begin{array}{lll}
7^1=7 & 7^2=49 & 7^3=343 \\
7^4=2401 & 7^5=16807 & 7^6=117649 \\
7^7=823543 & 7^8=5764801 & 7^9=40353607 \\
7^{10}=282475249 & 7^{11}=1977326743 & 7^{12}=13841287201 \\
7^{13}=96889010407 & 7^{14}=678223072849
\end{array} \]
(4)四面体$\mathrm{ABCD}$は,$4$つの面のどれも$3$辺の長さが$7,\ 8,\ 9$の三角形である.この四面体$\mathrm{ABCD}$の体積は$[$6$]$である.
昭和大学 私立 昭和大学 2014年 第3問
次の各問に答えよ.

(1)$1$から$8$までの数字を$1$つずつ記した$8$個の球が袋の中に入っている.この袋から$1$個の球を取り出し,その数字を読み取ってはもとの袋に戻す操作を$3$回繰り返す.ただし,どの球が選ばれる確率も同じであるとする.いま,読み取った$3$個の数字のうち最大の数と最小の数の差を$R$とする.次の問に答えよ.
$(1$-$1)$ $R=1$となる確率を求めよ.
$(1$-$2)$ $R=4$となる確率を求めよ.
$(1$-$3)$ $R$の期待値を求めよ.
(2)$x$についての$2$次方程式$x^2+(\log_a 5)x+\log_5 a^2=0$が相異なる負の解をもつための定数$a$のとるべき値の範囲を求めよ.
(3)行列$A$を$A=\left( \begin{array}{cc}
a & b \\
-b & a
\end{array} \right)$とし,さらに,$A^2=B$および$B^2=A$を満たす行列$B$が存在するとする.ただし$a,\ b$は実数で,$b>0$とする.次の問に答えよ.
$(3$-$1)$ 行列$A^3$を求めよ.
$(3$-$2)$ $a,\ b$の値を求めよ.
大同大学 私立 大同大学 2014年 第4問
$0<a<2$とする.曲線$y=x^4$の点$(a,\ a^4)$における接線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)曲線$y=x^4$と$\ell$および$y$軸で囲まれる部分の面積$S(a)$を求めよ.
(3)曲線$y=x^4 (x \geqq a)$と直線$y=a^4$および直線$x=2$で囲まれる部分の面積$T(a)$を求めよ.
(4)$S(a)+T(a)$を最小にする$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第4問
$2$個以上の正の整数を要素とする有限集合を$A$とする.

$A$のどの$2$数も一方が他方を割り切るとき$A$は良い集合であるといい,$A$のどの$2$数も互いに他を割り切らないとき$A$は悪い集合であるという.
また,$A$の良い部分集合の要素の個数の最大値,すなわち,
\[ \max \left\{ n(B) \;|\; B \subset A,\ n(B) \geqq 2 \text{かつ} B \text{は良い集合} \right\} \]
を$A$の最良数と定義し,$A$の悪い部分集合の要素の個数の最大値,すなわち,
\[ \max \left\{ n(B) \;|\; B \subset A,\ n(B) \geqq 2 \text{かつ} B \text{は悪い集合} \right\} \]
を$A$の最悪数と定義する.
たとえば,$A=\{2,\ 3,\ 5,\ 7,\ 11,\ 14,\ 15,\ 77,\ 154,\ 225,\ 231,\ 308 \}$のとき,$A$の良い部分集合は$\{7,\ 77,\ 231\}$,$\{7,\ 14,\ 154,\ 308 \}$,$\{11,\ 77,\ 154,\ 308 \}$などであり,$A$の最良数は$4$である.また,$A$の悪い部分集合は$\{231,\ 308 \}$,$\{14,\ 15,\ 77 \}$,$\{2,\ 7,\ 11,\ 15 \}$,$\{2,\ 3,\ 5,\ 7,\ 11 \}$などであり,$A$の最悪数は$5$である.
$k$を$2$以上の整数とするとき,次の問いに答えよ.

(1)$n(A)=k^2$で,かつ最良数も最悪数も$k$である集合$A$が存在することを証明せよ.
(2)$n(A) \geqq k^2+1$ならば,$A$の最良数または$A$の最悪数のどちらかは$k+1$以上であることを証明せよ.
(3)要素数が$2014$で,かつ最良数と最悪数が等しいような集合,すなわち,
\[ n(A)=2014 \quad \text{かつ} \quad (A \text{の最良数})=(A \text{の最悪数}) \]
を満たす集合$A$を考える.このような集合たちの中で最良数が最小となる集合の例を挙げよ.
同志社大学 私立 同志社大学 2014年 第2問
$p,\ q$を実数とする$t$に関する$2$次方程式$t^2+pt+q=0$の解が虚数になるとき,次の問いに答えよ.

(1)解の$1$つを$\alpha$とするとき,$\alpha (2-\alpha)$が実数でありかつ$\alpha (2-\alpha)<2$となるための$p,\ q$の条件を求めよ.
(2)虚部が負の解を$\beta$とする.$(1)$の条件のもとで$\beta (1-\beta)$の実部を$y$,虚部を$x$として,座標平面上の点$\mathrm{P}(x,\ y)$の軌跡を求めよ.
(3)$(2)$で求めた軌跡上の点$\mathrm{P}(x,\ y)$と定点$\mathrm{Q}(0,\ 1)$との距離が最小となるときの点$\mathrm{P}$の座標と距離$\mathrm{PQ}$を求めよ.
北里大学 私立 北里大学 2014年 第1問
つぎの$[ ]$にあてはまる答を記せ.

(1)空間に$4$点$\mathrm{A}(5,\ 1,\ 3)$,$\mathrm{B}(4,\ 4,\ 3)$,$\mathrm{C}(2,\ 3,\ 5)$,$\mathrm{D}(4,\ 1,\ 3)$がある.

(i) $\overrightarrow{\mathrm{DA}}$と$\overrightarrow{\mathrm{DB}}$のなす角を$\theta$とおくとき,$\theta=[ア]$である.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(ii) 四面体$\mathrm{ABCD}$の体積は$[イ]$である.

(2)$a$を実数とする.$x$についての$2$次方程式$x^2-2x \log_2 \{(a+1)(a-5)\}+4=0$の解の$1$つが$2$であるとき,$a$の値は$[ウ]$である.また,この$2$次方程式が実数解をもたないような$a$の値の範囲は$[エ]$である.
(3)不等式$\displaystyle x^2+2x \leqq y \leqq 2x+2 \leqq \frac{4}{3}y$の表す領域の面積は$[オ]$である.また,この領域上の点$(x,\ y)$のうち,$5x-3y$が最小となるような点の座標は$[カ]$である.
(4)$n$は正の整数とする.階段を$1$度に$1$段,$2$段または$3$段登る.このとき,$n$段からなる階段の登り方の総数を$a_n$とする.例えば,$a_1=1$であり,$a_2=2$である.

(i) $a_3$の値は$[キ]$である.
(ii) $a_4$の値は$[ク]$である.
(iii) $a_{10}$の値は$[ケ]$である.

(5)$\displaystyle 0<t<\frac{\pi}{2}$とする.曲線$y=\sin x$上の点$\displaystyle \mathrm{P} \left( t+\frac{\pi}{2},\ \sin \left( t+\frac{\pi}{2} \right) \right)$における法線を$\ell$とおく.直線$\displaystyle x=\frac{\pi}{2}$を$m$とおき,法線$\ell$と直線$m$の交点を$\mathrm{Q}$とする.

(i) $\displaystyle t=\frac{\pi}{3}$のとき,点$\mathrm{Q}$の座標は$[コ]$である.
(ii) 曲線$y=\sin x$と法線$\ell$および直線$m$で囲まれた部分の面積を$S(t)$とするとき,極限$\displaystyle \lim_{t \to +0} \frac{S(t)}{t}$の値は$[サ]$である.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。