タグ「最小」の検索結果

19ページ目:全521問中181問~190問を表示)
大分大学 国立 大分大学 2014年 第3問
$100$から$999$までの自然数の集合を全体集合$U$とし,そのうち$14$で割ると$3$余るものの集合を$A$,$9$の倍数の集合を$B$とおく.

(1)$A,\ B$の要素の個数を求めなさい.
(2)$A \cap B$の要素のうち,最小のものと最大のものを求めなさい.
(3)$U$の要素が$1$つずつ書かれた玉の入った袋から玉を$2$個取り出す.このとき,$2$個の玉に書かれている数がいずれも$14$で割ると$3$余り,かつ$9$で割り切れない場合の確率を求めなさい.
旭川医科大学 国立 旭川医科大学 2014年 第2問
$\displaystyle 0<a \leqq \frac{\pi}{2}$とし,曲線$y=1-\cos x (0 \leqq x \leqq a)$を$C$とする.$0<t<a$とし,原点と$C$上の点$(t,\ 1-\cos t)$を通る直線を$\ell$とおくとき,次の問いに答えよ.

(1)曲線$C$と直線$\ell$とで囲まれた部分の面積を$S_1(t)$,$t \leqq x \leqq a$の範囲で$C$と$\ell$と直線$x=a$とで囲まれた部分の面積を$S_2(t)$とおくとき,$S_1(t)+S_2(t)$を求めよ.
(2)$S_1(t)+S_2(t)$を最小とする$t$の値を$t_0$とするとき,$t_0$を$a$を用いて表せ.

(3)$\displaystyle \lim_{a \to +0} \frac{S_1(t_0)-S_2(t_0)}{a^3}$を求めよ.ただし,$\displaystyle a-\frac{a^3}{3!}<\sin a<a-\frac{a^3}{3!}+\frac{a^5}{5!} (a>0)$は用いてよい.
宮崎大学 国立 宮崎大学 2014年 第2問
曲線$\displaystyle C_1:y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$上の点$\displaystyle (t,\ \cos t) \left( 0<t<\frac{\pi}{2} \right)$における曲線$C_1$の接線を$\ell$とする.また,$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$と接線$\ell$との交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とし,放物線$\displaystyle C_2:y=-\frac{x^2}{2}+ax+c$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1$,$C_2$と$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$で囲まれる部分の面積を$S$とする.$S$を,$a$と$c$を用いて表せ.
(3)$(2)$の$S$が最小となる$t$の値を求めよ.
大分大学 国立 大分大学 2014年 第4問
$100$から$999$までの自然数の集合を全体集合$U$とし,そのうち$14$で割ると$3$余るものの集合を$A$,$9$の倍数の集合を$B$とおく.

(1)$A,\ B$の要素の個数を求めなさい.
(2)$A \cap B$の要素のうち,最小のものと最大のものを求めなさい.
(3)$U$の要素が$1$つずつ書かれた玉の入った袋から玉を$2$個取り出す.このとき,$2$個の玉に書かれている数がいずれも$14$で割ると$3$余り,かつ$9$で割り切れない場合の確率を求めなさい.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第5問
次の各問いに答えよ.

(1)座標平面上での原点を中心とする${150}^\circ$の回転移動を表す行列を$P$とする.点$(x,\ y)$が$P$の表す移動によって,点$(2,\ 4)$に移ったとする.このとき,点$(x,\ y)$を求めよ.
(2)$(1)$で与えられた行列$P$を考える.$P^n=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たす最小の自然数$n$を求めよ.
(3)以下の各命題の反例をあげよ.また,反例になっていることを示せ.ただし,$X,\ Y$は$2$次の正方行列とする.

(i) $XY=YX$が成立する.
(ii) $XY=O$ならば,$X=O$または$Y=O$である.ただし,$O$は$2$次の零行列を表す.
(iii) $A$を逆行列$A^{-1}$をもつ$2$次の正方行列とする.このとき,$AX=Y$ならば,$X=YA^{-1}$である.
三重大学 国立 三重大学 2014年 第5問
実数$a$に対して,下の$4$つの条件$p,\ q,\ r,\ s$を考える.ただし,実数$k$に対して,$[k]$は$k$以下の最大の整数を表し,$\langle k \rangle$は$k$以上の最小の整数を表すとする.たとえば,$k=2.15$のとき,$[k]=2$であり,$\langle k \rangle=3$である.また,$|k|$は$k$の絶対値を表す.

$p:x^2+4x+a^2=0$を満たす実数$x$が存在する.
$q:[a]<\langle a \rangle$
$\displaystyle r:|a-1.5|<\frac{1}{|a-1.5|+1.5}$
$\displaystyle s:0<a<\pi$,かつ,$\displaystyle \sin \left( 2a-\frac{\pi}{4} \right)+\sin \left( 2a+\frac{\pi}{4} \right)=0$

上の$p,\ q,\ r,\ s$それぞれについて,条件を満たす$a$の範囲を求めよ.さらに,以下の$①$,$②$,$③$それぞれについて,$p,\ q,\ r,\ s$の中から,あてはまるものを全て答えよ.

$①$ $p$であるための十分条件である.
$②$ $q$であるための十分条件である.
$③$ $r$であるための十分条件である.
香川大学 国立 香川大学 2014年 第4問
関数$f(x)=xe^{2-x}$について,次の問に答えよ.

(1)曲線$C:y=f(x)$の概形をかけ.
(2)曲線$C$の接線のうち傾きが最小のものを$\ell$とするとき,$\ell$の方程式を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第1問
関数$f(x)=xe^{2-x}$について,次の問に答えよ.

(1)曲線$C:y=f(x)$の概形をかけ.
(2)曲線$C$の接線のうち傾きが最小のものを$\ell$とするとき,$\ell$の方程式を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。