タグ「最小」の検索結果

17ページ目:全521問中161問~170問を表示)
沖縄国際大学 私立 沖縄国際大学 2015年 第3問
以下の各問に答えなさい.

(1)次の関数のグラフを$x$軸方向に$\displaystyle -\frac{1}{3}$,$y$軸方向に$\displaystyle -\frac{1}{3}$だけ平行移動したグラフの方程式を求めよ.
\[ y=-3x^2+2x-1 \]
(2)関数$f(x)=x^2-12x+c$が$2 \leqq x \leqq 9$において最大値が$12$になるように,定数$c$の値を求めよ.
(3)縦横$13$本の線を持つ碁盤($13$路盤)がある.各線によって構成される枠の大きさはすべて等しく,$1$辺が$1 \, \mathrm{cm}$である.ここで,$4$つの角を左上から反時計回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とした場合,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$上にそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$の場所に碁石を配置した.ただし,$\mathrm{AE}=x$,$\mathrm{BF}=2x$,$\mathrm{CG}=x+6 (0<x<6)$であるようにする.このとき,三角形$\mathrm{EFG}$の面積が最小になる場合の$x$の値と,その面積を求めよ.
(図は省略)
大阪市立大学 公立 大阪市立大学 2015年 第3問
$m>0$とする.座標平面上の点$\mathrm{P}$に対して,$\mathrm{P}$を通る傾き$m$の直線と$y$軸の交点を$\mathrm{R}$とし,点$\mathrm{Q}$を$\overrightarrow{\mathrm{RQ}}=m \overrightarrow{\mathrm{RP}}$となるように定める.次の問いに答えよ.

(1)$\mathrm{P}$の座標を$(a,\ b)$とするとき,$\mathrm{Q}$の座標を$m,\ a,\ b$を用いて表せ.
(2)点$\mathrm{P}$が放物線$y=x^2-x$上を動くとき,対応する点$\mathrm{Q}$の軌跡を$C$とする.$C$の方程式を$y=f(x)$とするとき,$f(x)$を求めよ.
(3)$(2)$の$f(x)$に対し,$\displaystyle I(m)=\int_0^m f(x) \, dx$とする.$m$を$m>0$の範囲で変化させるとき,$I(m)$を最小にする$m$の値を求めよ.
大阪市立大学 公立 大阪市立大学 2015年 第1問
$a>0$,$b>0$とする.$xy$平面において,原点を通る傾き正の直線が,直線$y=-a$と交わる点を$\mathrm{P}$とし,直線$x=b$と交わる点を$\mathrm{Q}$とする.$\mathrm{P}$の$x$座標を$p$とし,線分$\mathrm{PQ}$の長さを$L$とおくとき,次の問いに答えよ.

(1)$L^2$を$a,\ b,\ p$を用いて表せ.
(2)$a,\ b$を定数とし,$p$を$p<0$の範囲で変化させるとき,$L^2$を最小にする$p$の値を求めよ.
(3)$(2)$で求めた$p$の値を$p_0$とする.また,$c$を$a^{\frac{2}{3}}+b^{\frac{2}{3}}=c^{\frac{2}{3}}$を満たす正の実数とする.$p=p_0$のときの$L^2$の値を$c$を用いて表せ.
奈良県立医科大学 公立 奈良県立医科大学 2015年 第9問
$\displaystyle f(x)=\left( \frac{5}{1+3e^{-2x}} \right)^2-\left( \frac{5}{1+3e^{-2x}} \right)+1$とする.$f(x)$が最小となるときの$x$の値を求めよ.
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
三重県立看護大学 公立 三重県立看護大学 2015年 第1問
次の$[$1$]$から$[$10$]$に適する答えを書きなさい.

(1)$-2z-xy^2+2xyz-x+x^2y+y$を因数分解すると$[$1$]$となる.
(2)$p>0$のとき,$\displaystyle p+\frac{1}{p}$は$[$2$]$で最小値$[$3$]$となる.
(3)サイコロを$4$つ投げるとき,すべての目が異なる確率は$[$4$]$であり,少なくとも$2$つのサイコロの目が同じである確率は$[$5$]$である.
(4)$\overrightarrow{a}=(3,\ -2)$,$\overrightarrow{b}=(-2,\ -1)$のとき,$|\overrightarrow{a}+t \overrightarrow{b}|$を最小にする$t$の値は$t=[$6$]$,そのときの最小値は$[$7$]$となる.
(5)$\log_2 (x-1)+\log_2 (6-x)=2$を解くと,解は小さい方から順に$[$8$]$,$[$9$]$となる.
(6)数列$1 \cdot 3 \cdot 5,\ 3 \cdot 5 \cdot 7,\ 5 \cdot 7 \cdot 9,\ \cdots$の一般項$a_n=[$10$]$である.
尾道市立大学 公立 尾道市立大学 2015年 第2問
次の問いに答えなさい.

(1)$3$を引いても$12$を足しても平方数となる自然数をすべて求めなさい.
(2)$3^n$を$5$で割ると$1$余るという性質を持つ最小の自然数$n$は何か答えなさい.
(3)$179x+767y=1$をみたす整数の組$(x,\ y)$をすべて求めなさい.
大阪府立大学 公立 大阪府立大学 2015年 第4問
座標平面上に,原点$\mathrm{O}$および$2$点$\mathrm{A}(2,\ 1)$,$\mathrm{B}(0,\ -1)$がある.原点$\mathrm{O}$を通り,$\overrightarrow{u}=(2,\ -1)$を方向ベクトルとする直線を$\ell$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおき,$s,\ t$を実数として,$\overrightarrow{\mathrm{OP}}=\overrightarrow{a}+s \overrightarrow{u}$で与えられる点$\mathrm{P}$および$\overrightarrow{\mathrm{OQ}}=\overrightarrow{b}+t \overrightarrow{u}$で与えられる点$\mathrm{Q}$を考える.このとき,次の問いに答えよ.

(1)$\overrightarrow{u}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\angle \mathrm{POQ}$が直角となる$s,\ t$の条件を求めよ.
(3)直線$\mathrm{PQ}$と直線$\ell$の交点を$\mathrm{R}$とし,実数$k$を用いて,$\overrightarrow{\mathrm{OR}}=k \overrightarrow{u}$とする.このとき,$k$を$s,\ t$を用いて表せ.
(4)$\angle \mathrm{POQ}$が直角となる条件のもと,三角形$\mathrm{POQ}$の面積$F$が最小となるときの$k$の値を求めよ.
京都大学 国立 京都大学 2014年 第1問
座標空間における次の$3$つの直線$\ell$,$m$,$n$を考える:

$\ell$は点$\mathrm{A}(1,\ 0,\ -2)$を通り,ベクトル$\overrightarrow{u}=(2,\ 1,\ -1)$に平行な直線である.
$m$は点$\mathrm{B}(1,\ 2,\ -3)$を通り,ベクトル$\overrightarrow{v}=(1,\ -1,\ 1)$に平行な直線である.
$n$は点$\mathrm{C}(1,\ -1,\ 0)$を通り,ベクトル$\overrightarrow{w}=(1,\ 2,\ 1)$に平行な直線である.

$\mathrm{P}$を$\ell$上の点として,$\mathrm{P}$から$m$,$n$へ下ろした垂線の足をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.このとき,$\mathrm{PQ}^2+\mathrm{PR}^2$を最小にするような$\mathrm{P}$と,そのときの$\mathrm{PQ}^2+\mathrm{PR}^2$を求めよ.
京都大学 国立 京都大学 2014年 第5問
自然数$a,\ b$はどちらも$3$で割り切れないが,$a^3+b^3$は$81$で割り切れる.このような$a,\ b$の組$(a,\ b)$のうち,$a^2+b^2$の値を最小にするものと,そのときの$a^2+b^2$の値を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。