タグ「最小」の検索結果

12ページ目:全521問中111問~120問を表示)
愛知教育大学 国立 愛知教育大学 2015年 第8問
数列$\{a_n\}$を
\[ a_n=\frac{(-1)^n}{n(n+2)} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.次の問いに答えよ.

(1)数列$\{b_n\}$を$b_n=a_{2n}$で定めるとき,$\displaystyle \sum_{k=1}^n b_k$を求めよ.
(2)数列$\{a_n\}$の初項から第$2n$項までの和$S_{2n}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty}S_{2n}$を求めよ.
(4)$\displaystyle S=\lim_{n \to \infty} S_{2n}$とおくとき,$|S_{2n|-S}<0.001$を満たす最小の自然数$n$を求めよ.
宮崎大学 国立 宮崎大学 2015年 第3問
曲線$C:y=|x^2-6x|$と直線$\ell:y=kx$($k$は実数)について,次の各問に答えよ.

(1)曲線$C$を座標平面上に図示せよ.
(2)曲線$C$と直線$\ell$が異なる$3$つの共有点をもつような$k$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$C$と直線$\ell$で囲まれた$2$つの部分の面積の和が最小になるような$k$の値を求めよ.
鳴門教育大学 国立 鳴門教育大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\angle \mathrm{A}={60}^\circ$とします.辺$\mathrm{AB}$上に点$\mathrm{D}$,辺$\mathrm{AC}$上に点$\mathrm{E}$を$\mathrm{AD}=\mathrm{CE}$となるようにとります.ただし,点$\mathrm{D}$,$\mathrm{E}$は頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とは異なるものとします.次の問いに答えなさい.

(1)$\mathrm{BC}$の長さを求めなさい.
(2)$\triangle \mathrm{ABC}$の外接円の半径$R$を求めなさい.
(3)$\mathrm{DE}$の長さが$2 \sqrt{2}$となるとき,$\mathrm{AD}$の長さを求めなさい.
(4)四角形$\mathrm{DBCE}$の面積が最小となる$\mathrm{AD}$の長さを求めなさい.また,そのときの四角形$\mathrm{DBCE}$の面積を求めなさい.
名古屋大学 国立 名古屋大学 2015年 第1問
座標平面上の円$C:x^2+(y-1)^2=1$と,$x$軸上の$2$点$\mathrm{P}(-a,\ 0)$,$\mathrm{Q}(b,\ 0)$を考える.ただし,$a>0$,$b>0$,$ab \neq 1$とする.点$\mathrm{P}$,$\mathrm{Q}$のそれぞれから$C$に$x$軸とは異なる接線を引き,その$2$つの接線の交点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)直線$\mathrm{QR}$の方程式を求めよ.
(2)$\mathrm{R}$の座標を$a,\ b$で表せ.
(3)$\mathrm{R}$の$y$座標が正であるとき,$\triangle \mathrm{PQR}$の周の長さを$T$とする.$T$を$a,\ b$で表せ.
(4)$2$点$\mathrm{P}$,$\mathrm{Q}$が,条件「$\mathrm{PQ}=4$であり,$\mathrm{R}$の$y$座標は正である」を満たしながら動くとき,$T$を最小とする$a$の値とそのときの$T$の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第1問
$xyz$空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(2,\ 4,\ -1)$を考える.直線$\mathrm{AB}$上の点$\mathrm{C}_1$,$C_2$はそれぞれ次の条件を満たす.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$|\overrightarrow{\mathrm{OC}}|$は$\mathrm{C}$が$\mathrm{C}_1$に一致するとき最小となる.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{OC}}|}$は$\mathrm{C}$が$\mathrm{C}_2$に一致するとき最大となる.

このとき,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OC}_1}|$の値および内積$\overrightarrow{\mathrm{AC}_1} \cdot \overrightarrow{\mathrm{OC}_1}$の値を求めよ.

(2)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}_2}|}{|\overrightarrow{\mathrm{OC}_2}|}$の値および内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}_2}$の値を求めよ.

(3)$2$つの三角形$\triangle \mathrm{AC}_1 \mathrm{O}$と$\triangle \mathrm{AOC}_2$は相似であることを示せ.
秋田大学 国立 秋田大学 2015年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$,$\mathrm{OA}=1$,$\mathrm{OB}=\mathrm{OC}=\sqrt{2}$,$\angle \mathrm{AOB}=\angle \mathrm{AOC}={90}^\circ$,$\angle \mathrm{BOC}=\theta$とする.点$\mathrm{D}$を$\mathrm{BC}$の中点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.次の問いに答えよ.

(1)点$\mathrm{P}$を$\mathrm{AD}$上の点とし,$\mathrm{AP}:\mathrm{PD}=t:(1-t)$とするとき,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ t$を用いて$\overrightarrow{\mathrm{OP}}$を表せ.
(2)点$\mathrm{P}$を$\mathrm{AD}$上の動点とする.$\mathrm{OP}$の長さが最小となるとき,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \theta$を用いて$\overrightarrow{\mathrm{OP}}$を表せ.
(3)点$\mathrm{Q}$を以下の$①$~$③$を満たすように定める.このとき$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \theta$を用いて$\overrightarrow{\mathrm{OQ}}$を表せ.

\mon[$①$] 四面体$\mathrm{OABC}$の体積と四面体$\mathrm{QABC}$の体積は等しい
\mon[$②$] $\mathrm{QA}=\mathrm{QB}=\mathrm{QC}$
\mon[$③$] 線分$\mathrm{OQ}$は$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面と交点をもたない.
京都教育大学 国立 京都教育大学 2015年 第5問
$a$は実数であるとする.$x$の関数$f(x)$を,
\[ f(x)=\frac{1}{3}x^3-\frac{a-1}{2}x^2-ax+2 \]
により定義する.
\[ I=\int_0^6 |f^\prime(x)| \, dx \]
が最小になるような$a$の値と,そのときの$I$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)$2$次方程式$x^2+kx+k+8=0$が異なる$2$つの実数解$\alpha$,$\beta$をもつとする.このとき,定数$k$の値の範囲は$k<[ア]$または$k>[イ]$である.さらに,このとき$\alpha^2+\beta^2=19$となるような定数$k$の値は$k=[ウ]$である.
(2)$xyz$空間の$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$,$\mathrm{C}(0,\ \sqrt{3},\ 0)$を$3$頂点とする三角形を底面にもち,$z \geqq 0$の部分にある正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{D}$の座標は$[エ]$である.また$4$頂点において正四面体$\mathrm{ABCD}$に外接する球の中心$\mathrm{E}$の座標は$[オ]$であり,$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EB}}$のなす角を$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\cos \theta=[カ]$である.
(3)$n$を自然数とする.白玉$5$個と赤玉$n$個が入っている袋から同時に玉を$2$個取り出すとき,取り出した玉の色が異なる確率を$p_n$とする.このとき$p_n=[キ]$である.また$\displaystyle p_n \leqq \frac{1}{5}$となる最小の自然数$n$は$n=[ク]$である.
早稲田大学 私立 早稲田大学 2015年 第2問
空間内に,一辺の長さ$1$の正四面体$\mathrm{OABC}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問に答えよ.

(1)辺$\mathrm{AB}$の中点を$\mathrm{D}$とし,また,辺$\mathrm{OC}$を$k:(1-k)$に内分する点を$\mathrm{E}$とする.ただし,$0<k<1$とする.このとき,$\overrightarrow{\mathrm{DE}}$を,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{DE}}$の大きさ$|\overrightarrow{\mathrm{DE}}|$を$k$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{DE}}$を$k$を用いて表せ.
(4)$\triangle \mathrm{EAB}$の面積$S$を$k$を用いて表せ.さらに,面積$S$を最小にする$k$の値とそのときの面積を求めよ.
自治医科大学 私立 自治医科大学 2015年 第18問
$x+y+z=n$($x,\ y,\ z,\ n$は$0$以上の整数)を満たす$(x,\ y,\ z)$の組の数を$f(n)$で与えることとする.$f(n)>185$となるような最小の$n$を$a$とするとき,$\displaystyle \frac{a}{2}$の値を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。