タグ「最小値」の検索結果

94ページ目:全1222問中931問~940問を表示)
高崎経済大学 公立 高崎経済大学 2012年 第3問
以下の各問に答えよ.

(1)$a>0,\ b>0$のとき,不等式$\displaystyle \frac{a+b}{2} \geqq \sqrt{ab}$を証明せよ.また,等号が成り立つのはどのようなときか.
(2)$2\log_{10}u+\log_{10}v=1$とする.$u^3+uv^2$の最小値とそのときの$u,\ v$の値を求めよ.
(3)$\mathrm{O}$を原点とする$xy$平面がある.この平面上に(2)で求めた$u,\ v$からなる点$\mathrm{A}(u,\ v)$をとる.点$\mathrm{A}$を通り,直線$\mathrm{OA}$と$30^\circ$の角をなす直線の方程式をすべて求めよ.
大阪府立大学 公立 大阪府立大学 2012年 第2問
座標平面上に3点O$(0,\ 0)$,A$(r,\ 0)$,B$(0,\ 1)$がある.Oを中心として,Aを反時計回りに$\theta$回転した点をA$^\prime$とし,線分ABと線分OA$^\prime$の交点をPとする.ただし,$r$は$r>1$を満たす定数とし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$を満たす変数とする.$\theta$が不等式$\displaystyle \frac{1}{2}r \cos \theta \leqq \sin \theta \leqq 2r \cos \theta$を満たしながら変化するとき,$|\overrightarrow{\mathrm{OP}}|$の最小値$M$と,そのときのPの座標$(k,\ l)$を求めよ.
広島市立大学 公立 広島市立大学 2012年 第2問
次の問いに答えよ.

(1)$A=\left( \begin{array}{cc}
2 & -1 \\
1 & 0
\end{array} \right)$について,以下の問いに答えよ.

(i) $A$は逆行列をもつことを示し,$A^{-1}$を求めよ.
(ii) $A^2,\ A^3,\ A^4$を求めよ.
(iii) 正の整数$n$に対して$A^n$を推測し,その推測が正しいことを証明せよ.

(2)$a,\ b,\ c$を定数とし,$a>0$であるとする.2次関数$f(x)=ax^2+bx+c \ (-1 \leqq x \leqq 1)$の最小値を求めよ.
広島市立大学 公立 広島市立大学 2012年 第3問
空間内に4点O,A,B,Cがあり,次の条件を満たすものとする.
\[ \text{OA}=1,\ \text{OB}=1,\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{BOC}=\frac{\pi}{3},\ \angle \text{COA}=\frac{\pi}{4} \]
また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,Pは平面OAB上の点で$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$と表されているとする.点Pが$|\overrightarrow{\mathrm{OP}}|=1$を満たして動くとき,以下の問いに答えよ.

(1)点Cから平面OABに下ろした垂線と平面OABの交点をQとする.したがって,$\text{CQ} \perp \text{OA},\ \text{CQ} \perp \text{OB}$である.$\overrightarrow{\mathrm{OQ}}=u \overrightarrow{a}+v \overrightarrow{b}$と表したとき,$u,\ v$を求めよ.
(2)$(ⅰ)$ \ 内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値と最小値を求めよ.また,最大値をとるときの$x,\ y$の値,最小値をとるときの$x,\ y$の値をそれぞれ求めよ.\\
$(ⅱ)$ \ $\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OC}}$のなす角$\theta$がとりうる値の範囲を求めよ.ただし,$0 \leqq \theta \leqq \pi$とする.
(3)内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$が最大値,最小値をとるときの点PをそれぞれP$_1$,P$_2$とおく.点P$_1$,P$_2$はいずれも直線OQ上にあることを示せ.ただし,Qは(1)で定めた点とする.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第1問
以下の問いに答えよ.

(1)$a$と$b$を正の実数とするとき,不等式$a+b \geqq 2\sqrt{ab}$が成り立つことを示せ.また,等号が成り立つのは,どのようなときか.
(2)$p$と$q$を$1$より大きい実数とするとき,$\log_pq+4\log_qp$の最小値を求めよ.また,その最小値をとるのは,$p$と$q$がどのような関係をみたすときか.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第2問
以下の問いに答えよ.

(1)$|x+y+1| \leqq 3$で定まる座標平面の領域を$D$とする.$D$を図示せよ.
(2)方程式$\displaystyle y= \left( -1+\frac{1}{a} \right)x$で与えられる直線$\ell$と,(1)で定めた領域$D$の共通部分として与えられる線分を考える.この線分の長さの最小値を求めよ.また,線分の長さが最小となるときの直線$\ell$は,どのような方程式で与えられるか.ただし,$a$は$0$でない定数とする.
会津大学 公立 会津大学 2012年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_1^4 \sqrt{x} \, dx=[ ]$
(ii) $\displaystyle \int_0^{\frac{\pi}{2}} \sin^2 x \cos x \, dx=[ ]$

(2)$2$つのベクトル$\overrightarrow{a}=(1,\ 3)$,$\overrightarrow{b}=(2,\ -1)$に対して,$|\overrightarrow{a}+t \overrightarrow{b}|$は$t=[ ]$のとき,最小値$[ ]$をとる.
(3)$0 \leqq \theta \leqq \pi$において$\sin 2\theta-2 \cos \theta=0$のとき,$\theta=[ ]$である.
(4)不等式$\log_3(2x-3)<2$をみたす$x$の値の範囲は$[ ]$である.
(5)$4$つの袋があり,各袋に赤,青,黄の玉が$1$つずつ入っている.各袋から$1$つずつ玉を取り出すとき,取り出した$4$つの玉がすべて同じ色である確率は$[ ]$であり,$2$種類の色である確率は$[ ]$である.
会津大学 公立 会津大学 2012年 第5問
連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2-1 \leqq 0 \\
x+y-1 \leqq 0 \\
x+2y-1 \geqq 0
\end{array} \right. \]
の表す領域を$D$とする.$D$を図示せよ.また,その結果を用いて,点$(x,\ y)$が領域$D$内を動くときの$2x+y$のとる値の最大値と最小値を求めよ.
滋賀県立大学 公立 滋賀県立大学 2012年 第1問
$y=x(x-2a) (a>0)$で表される放物線$C$がある.$C$の頂点$\mathrm{P}$を通る$y$軸に平行な直線と,$x$軸との交点を$\mathrm{Q}$とする.また,$C$上を原点$\mathrm{O}$から$\mathrm{P}$まで動く点を$\mathrm{R}$とし,$\mathrm{R}$を通り$x$軸に平行な直線と線分$\mathrm{PQ}$との交点を$\mathrm{H}$とする.

(1)線分$\mathrm{OQ}$,線分$\mathrm{PQ}$および$C$で囲まれた領域の面積$S$を$a$を用いて表せ.
(2)線分$\mathrm{OR}$と$C$で囲まれた領域の面積と,線分$\mathrm{RH}$,線分$\mathrm{PH}$および$C$で囲まれた領域の面積との和を$T$とするとき,$T$を最小にする$\mathrm{R}$の座標と$T$の最小値を$a$を用いて表せ.
九州歯科大学 公立 九州歯科大学 2012年 第3問
定数$a,\ b,\ c$に対して,$y=2x^{-a}$,$z=cx^{ab}$とおくとき,次の問いに答えよ.ただし,$1 \leqq x \leqq 2$,$a>0$,$c>0$とする.

(1)$z$を$y,\ b,\ c$を用いて表せ.
(2)$s=\log_2y$,$t=\log_2z$とおく.定数$A$と$B$を用いて$t=As+B$と表したとき,$A$を$b$を用いて表せ.また,$B$を$b$と$c$を用いて表せ.
(3)$A=-3$,$B=8$のとき,$b$と$c$の値を求めよ.
(4)$A=-3$,$B=8$とする.$\displaystyle w=\frac{y}{z}$の$1 \leqq x \leqq 2$における最小値が$\displaystyle \frac{1}{32}$となるとき,$a$の値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。