タグ「最小値」の検索結果

83ページ目:全1222問中821問~830問を表示)
早稲田大学 私立 早稲田大学 2012年 第5問
実数$a$に対して関数$f(a)$を,
\[ f(a) = \int_1^2 \left|\frac{a}{x}-1\right|\, dx \]
と定める.$a$が$1 \leqq a \leqq 2$の範囲を動くとき,$f(a)$の最小値は$[ナ]+[ニ]\sqrt{[ヌ]}$であり,最大値は$[ネ]+[ノ]\log [ハ]$である.ただし,[ヌ],[ハ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第3問
平面上に点$\mathrm{O},\ \mathrm{A}_1,\ \mathrm{A}_2,\ \mathrm{A}_3,\ \cdots,\ \mathrm{A}_{100}$がある.ただし,同じ点があってもよい.また,平面上の点$\mathrm{P}$に対して,
\[ f(P) = \sum_{i=1}^{100} |\overrightarrow{\mathrm{PA}}_i|^2 \]
とする.また,$f(\mathrm{P})$の最小値を$m$とし,平面上の点$\mathrm{C}$は$f(\mathrm{C})=m$を満たすとする.
このとき,次の設問に答えよ.

(1)$\overrightarrow{a_i}=\overrightarrow{\mathrm{OA}}_i (i=1,\ 2,\ 3,\ \cdots,\ 100)$とするとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a_i}$を用いて表せ.
(2)次の条件
\[ (*) \qquad \sum_{i=1}^{100} \left( \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_i \mathrm{A}_j}|^2 \right) = \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_1 \mathrm{A}_j}|^2 + \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_2 \mathrm{A}_j}|^2 + \cdots+ \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_{100} \mathrm{A}_j}|^2=4000 \]
が成立しているときの$m$の値を求めよ.
(3)(2)における条件$(*)$が成立しているとき,集合
\[ \left\{A_i \ \; \bigg| \ \; |\overrightarrow{\mathrm{CA}_i}| \geqq 2,\ 1 \leqq i \leqq 100,\ i \text{は整数} \right\} \]
の要素の個数の最大値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第6問
$0 \leqq x \leqq 1$において,連立不等式
\[ \left\{
\begin{array}{l}
1-2x \leqq f(x) \\
x \leqq f(x) \\
f(x) \leqq 1
\end{array}
\right.
\]
を満たす$2$次関数$f(x)$で,定積分$\displaystyle\int_0^1 f(x)\, dx$の値を最小にする関数は,
\[ f(x) = [ネ]x^2 + [ノ]x + [ハ] \]
であり,その最小値は$\displaystyle\frac{[ヒ]}{[フ]}$となる.ただし,[フ]はできるだけ小さい自然数で答えることとする.
早稲田大学 私立 早稲田大学 2012年 第3問
次の問いに答えよ.

(1)整数$x,\ y$が$x^2-23y^2=1$を満たすとき,次の問いに答えよ.

(2)$1<x+\sqrt{23}y<49$のとき,$x=[ケ]$,$y=[コ]$である.
(3)$1$より小なる$x+\sqrt{23}y$が最大になるのは$x=[サ]$,$y=[シ]$のときである.

(4)曲線$y=x^2$,$x$軸,および直線$x=1$で囲まれた図形の面積を$S$とする.この図形の面積の近似値を以下の方法を用いて求める.区間$0 \leqq x \leqq 1$を$n$等分し,$i (1 \leqq i \leqq n)$番目の区間$\displaystyle\frac{(i-1)}{n} \leqq x \leqq \frac{i}{n}$を底辺とする高さ$\displaystyle \left( \frac{i-\displaystyle\frac{1}{2}}{n} \right)^2$の長方形を考える.これらの長方形の面積の$i$についての総和を$S_n$とする.

(i) $S_n=[ス]$である.
(ii) $\displaystyle |S-S_n| \leq \frac{1}{30000}$となる$n$の最小値は$[セ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
$a>0$とし,$x$の$3$次関数$f(x)$を
\[ f(x) = x^3 -5ax^2 + 7a^2x \]
と定める.また,$t \geqq 0$に対し,曲線$y=f(x)$と$x$軸および$2$直線$x=t$,$x=t+1$で囲まれた部分の面積を$S(t)$で表す.

(1)$S(0)=[ト]$である.
(2)$f(x)$は$x=[ナ]$で極小値をとる.曲線$y=f(x)$上にあり,$x$の値$[ナ]$に対応する点を$\mathrm{P}$とする.$a$の値が変化するとき,点$\mathrm{P}$の軌跡は曲線$y=[ニ] \ (x>0)$である.
(3)$S(t)=S(0)$を満たす正の実数$t$が存在するような$a$の値の範囲を不等式で表すと$[ヌ]$となる.以下,$a$の値はこの範囲にあるとする.$c$を$S(c)=S(0)$を満たす最大の正の実数とする.区間$0 \leqq t \leqq c$における$S(t)$の最大値,最小値をそれぞれ$M(a)$,$m(a)$とするとき,$M(a)+m(a)=[ネ]$となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
関数$f(x)=x(x-1)(x-3)(x-4)$は$0 \leq x \leq 4$の範囲において,
$x=[$35$]$で最大値[$36$]をとり,$x=\displaystyle\frac{[$37$]\text{±}\sqrt{[$38$][$39$]}}{[$40$]}$
で最小値$-\displaystyle\frac{[$41$]}{[$42$]}$をとる.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えなさい.

(1)関数
\[ f(x) = 2\sqrt{3}\,\sin^2\frac{x}{2}-\sin x+a \quad (0 \leqq x \leqq \pi) \]
の最小値が$\sqrt{3}$であるとする.このとき,$a=[ア]$であり,$f(x)$が最小となるのは$x=\displaystyle\frac{\pi}{[イ]}$のときである.
(2) $n$を$5$以上の自然数とする.$1$以上$n$以下の自然数から互いに隣り合わない$2$つを選ぶ組合せは
\[ \frac{1}{[ウ]} \left( n- [エ]\right) \left( n- [オ] \right) \]
通りあり,どの$2$つも隣り合わない$3$つを選ぶ組合せは
\[ \frac{1}{[カ]} \left( n- [キ]\right) \left( n- [ク] \right) \left( n- [ケ] \right) \]
通りある.ただし,$[エ] < [オ], \quad [キ] < [ク] < [ケ]$とする.
(3)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$4:3$に内分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\mathrm{AP}:\mathrm{PD}=s:(1-s)$,$\mathrm{BP}:\mathrm{PC}=t:(1-t)$とするとき
\[ \displaystyle s=\frac{[コ]}{[サ]}, \quad t=\frac{[シ]}{[ス]} \]
である.また,$\mathrm{OP}$の延長と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき
\[ \overrightarrow{\mathrm{OQ}} = \frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OP}} \]
である.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えよ.

(1)$0 \leqq x \leqq \pi$において
\[ y= \sin x + 2 \cos \left( x - \frac{\pi}{6} \right) \]
の最大値は$\sqrt{[ア]}$であり,最小値は$-\sqrt{[イ]}$である.
(2)$xy = 4x -y+28$を満たす正の整数$x,\ y$の組$(x,\ y)$は全部で[ウ]組ある.
(3)放物線$y=\displaystyle\frac{1}{2}x^2$は,$x$軸方向に[エ],$y$軸方向に$\displaystyle\frac{[オ]}{[カ]}$だけ平行移動すると,直線$y=-x$と直線$y=3x$の両方に接する.
(4)実数$x,\ y$が$x^2+xy+2y^2=1$を満たすとき,$y^2$がとり得る値の範囲は
\[ [キ] \leqq y^2 \leqq \frac{[ク]}{[ケ]} \]
である.
明治大学 私立 明治大学 2012年 第3問
次の各設問の$[12]$から$[15]$までの空欄に適するものを書け.また,$[ ]$には数字を入れよ.

$xy$平面上で連立不等式$3x-y+1 \geqq 0,\ x+3y-3 \geqq 0,\ 2x+y-6 \leqq 0$の表す領域を$D$とする.
(1)点$(x,\ y)$が領域$D$を動くとき,$3x+2y$の最大値は$[12]$であり,最小値は$[13]$である.
(2)領域$D$は三角形である.この三角形の外接円の中心の座標は$([14],\ [15])$であり,半径は$[ ]$である.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ラ]$までに当てはまる数字$0$~$9$を求めて記入せよ.ただし,分数は既約分数として表しなさい.

(1)数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$は次の関係式を満たすとする.
\[ a_1=0, \quad \left\{ \begin{array}{l}
b_n=\displaystyle\frac{1}{5}a_n+1 \\
a_{n+1}=3b_n+2
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_1 = [ア]$で,$n \geq 1$に対して$b_{n+1} = \displaystyle\frac{[イ]}{[ウ]} b_n + \frac{[エ]}{[オ]}$となる.これより,
\[ b_n = \displaystyle\frac{[カ]}{[キ]} - \frac{[ク]}{[ケ]} \left(\frac{[コ]}{[サ]} \right)^{n-1} \quad (n \geq 1) \]
となるので,
\[ \lim_{n \to \infty} b_n = \frac{[シ]}{[ス]}, \qquad \lim_{n \to \infty} \frac{b_{2n}-b_n}{b_{n+1}-b_n} = \frac{[セ]}{[ソ]} \]
となる。また,
\[ \sum_{n=1}^{\infty} (a_{2n}-a_n) = \frac{[タ][チ][ツ]}{[テ][ト]} \]
である.
(2)複素数$z = \cos\theta + i\sin\theta (0 \leq \theta<2\pi)$に対して,複素数$\omega$を
\[ \omega = (4+3i)z + 6i\,\overline{z} \]
で定める.ただし,$i$は虚数単位を,$\overline{z}=\cos\theta-i\sin\theta$は$z$と共役な複素数を表す.
いま$z$の実部と虚部がともに$0$以上となる範囲で$\theta$を動かす.このとき,$\omega$の実部の最大値は[ナ],最小値は[ニ]であり,$\omega \overline{\omega}$の最大値は[ヌ][ネ][ノ],最小値は[ハ][ヒ]である.ただし,$\overline{\omega}$は$\omega$と共役な複素数を表す.

(3)$x>0$で定義された微分可能な関数$f(x)$が,
\[ f^\prime(x) = 2\log x + \frac{1}{7-2e} \int_1^{e} \frac{f(t)}{t}\, dt, \quad f(1)=0 \]
を満たすとする.ここで,$f^\prime(x)$は$f(x)$の導関数,$\log$は自然対数,$e$は自然対数の底である.$f(x)$を求めると,
\[ f(x) = [フ] x\log x - \frac{[ヘ]}{[ホ]} x + \frac{[マ]}{[ミ]} \quad (x>0) \]
となる.関数$f(x)$は$\displaystyle x=e^{-\frac{[ム]}{[メ]}}$のとき,最小値
\[ -[モ]e^{-\frac{[ヤ]}{[ユ]}} + \frac{[ヨ]}{[ラ]}\]
をとる。
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。