タグ「最小値」の検索結果

82ページ目:全1222問中811問~820問を表示)
長崎大学 国立 長崎大学 2012年 第5問
関数$f(x)=xe^{-x^2}$について,次の問いに答えよ.

(1)$y=f(x)$の増減,極値,グラフの凹凸,および変曲点を調べて,そのグラフをかけ.ただし,$\displaystyle \lim_{x \to \infty}xe^{-x^2}=0,\ \lim_{x \to -\infty}xe^{-x^2}=0$を用いてよい.
(2)$y=f(x)$の最大値と最小値,およびそのときの$x$の値を求めよ.
(3)$t>0$とする.曲線$y=f(x)$,$x$軸,および直線$x=t$で囲まれた部分の面積$S(t)$を求めよ.
(4)(3)で求めた$S(t)$について,$\displaystyle \lim_{t \to \infty}S(t)$を求めよ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
岩手大学 国立 岩手大学 2012年 第6問
実数$t>1$に対して積分
\[ I(t)=\int_{-4}^{4t-4} (x-4)\sqrt{x+4} \, dx \]
を考える.このとき,次の問いに答えよ.

(1)$I(t)$を$t$で表せ.
(2)$I(t)$の$t>1$における最小値を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{2+\sqrt{3}+\sqrt{7}}$の分母を有理化せよ.
(2)方程式$4x^2-3x+k=0$の$2$つの解が$\sin \theta,\ \cos \theta$で与えられるとき,定数$k$の値を求めよ.
(3)関数$y=4^x-2^{x+2}+1$の$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(4)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
愛媛大学 国立 愛媛大学 2012年 第4問
実数$a$は$a>e$を満たすとし,曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$とする.

(1)$\ell$と$y$軸との交点を$\mathrm{B}$とし,$\ell$と$x$軸との交点を$\mathrm{C}$とする.$\mathrm{B}$と$\mathrm{C}$の座標を求めよ.
(2)$\ell$と$x$軸,$y$軸で囲まれた部分の面積を$S_1(a)$とし,曲線$y=\log x$と$x$軸および直線$x=a$で囲まれた部分の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を求めよ.
(3)$T(a)=S_2(a)-S_1(a)$とおく.$e^2 \leqq a \leqq e^3$における$T(a)$の最大値と最小値を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第5問
空間内に三角形$\mathrm{ABC}$と定点$\mathrm{O}$を中心とする半径$1$の球面$S$とがある.点$\mathrm{P}$が$S$上のすべての点を動くときの$\mathrm{AP}^2+\mathrm{BP}^2+\mathrm{CP}^2$の最大値,最小値をそれぞれ$M,\ m$とするとき,次の問に答えよ.ただし,三角形$\mathrm{ABC}$の重心$\mathrm{G}$は$\mathrm{OG}>1$をみたすものとする.

(1)$M=\mathrm{AQ}^2+\mathrm{BQ}^2+\mathrm{CQ}^2$となる$S$上の点を$\mathrm{Q}$,$m=\mathrm{AR}^2+\mathrm{BR}^2+\mathrm{CR}^2$となる$S$上の点を$\mathrm{R}$とするとき,$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{G}$は$1$直線上にあることを示せ.
(2)$\sqrt{M-(\mathrm{GA}^2+\mathrm{GB}^2+\mathrm{GC}^2)}-\sqrt{m-(\mathrm{GA}^2+\mathrm{GB}^2+\mathrm{GC}^2)}$の値は三角形$\mathrm{ABC}$に無関係に定まることを示し,その値を求めよ.
京都教育大学 国立 京都教育大学 2012年 第4問
空間において成分表示された$3$つのベクトルを
\[ \overrightarrow{a}=\left( \frac{\sqrt{3}+1}{2},\ 1,\ \frac{\sqrt{3}-1}{2} \right),\quad \overrightarrow{b}=(1,\ 0,\ 1),\quad \overrightarrow{c}=(1,\ 0,\ -1) \]
とする.これに対して原点$\mathrm{O}$に関する位置ベクトルが
\[ \overrightarrow{a}+(\cos t) \overrightarrow{b}+(\sin t) \overrightarrow{c} \]
である点$\mathrm{P}$を考える.次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{a}$,$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$,$\overrightarrow{b} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{c} \cdot \overrightarrow{c}$をそれぞれ計算せよ.
(2)$t$が$0$から$2\pi$まで動くとき,$|\overrightarrow{\mathrm{OP}}|$の最大値,最小値とそのときの$t$の値をそれぞれ求めよ.
愛媛大学 国立 愛媛大学 2012年 第5問
実数$a$は$a>e$を満たすとし,曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$とする.

(1)$\ell$と$y$軸との交点を$\mathrm{B}$とし,$\ell$と$x$軸との交点を$\mathrm{C}$とする.$\mathrm{B}$と$\mathrm{C}$の座標を求めよ.
(2)$\ell$と$x$軸,$y$軸で囲まれた部分の面積を$S_1(a)$とし,曲線$y=\log x$と$x$軸および直線$x=a$で囲まれた部分の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を求めよ.
(3)$T(a)=S_2(a)-S_1(a)$とおく.$e^2 \leqq a \leqq e^3$における$T(a)$の最大値と最小値を求めよ.
鳥取大学 国立 鳥取大学 2012年 第3問
点$\mathrm{A}(1,\ 2,\ 4)$を通り,ベクトル$\overrightarrow{n}=(-3,\ 1,\ 2)$に垂直な平面を$\alpha$とする.平面$\alpha$に関して同じ側に$2$点$\mathrm{P}(-2,\ 1,\ 7)$,$\mathrm{Q}(1,\ 3,\ 7)$がある.次の問いに答えよ.

(1)平面$\alpha$に関して点$\mathrm{P}$と対称な点$\mathrm{R}$の座標を求めよ.
(2)平面$\alpha$上の点で,$\mathrm{PS}+\mathrm{QS}$を最小にする点$\mathrm{S}$の座標とそのときの最小値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
$a,\ b$を実数とする.$2$次方程式
\[ x^2+(a-1)x+b+1 = 0 \]
が実数解を持ち、すべての解の絶対値が$1$以下になっているとき,次の問いに答えよ.

(1)点$(a,\ b)$が存在する領域を$D$とする.$D$に含まれる
$a$の最大値は$[ア]$,最小値は$[イ]$,
$b$の最大値は$[ウ]$,最小値は$[エ]$である.
(2)領域$D$の面積は$[オ]$である.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。