タグ「最小値」の検索結果

81ページ目:全1222問中801問~810問を表示)
長岡技術科学大学 国立 長岡技術科学大学 2012年 第2問
関数$\displaystyle f(x)=x+\frac{1}{x}$について,以下の問いに答えなさい.

(1)$x>0$における曲線$y=f(x)$の概形を書きなさい.
(2)$t>0$のとき,3直線$y=0,\ x=t,\ x=t+2$と曲線$y=f(x)$で囲まれる部分の面積$S(t)$を求めなさい.
(3)$t>0$における$S(t)$の最小値を求めなさい.
小樽商科大学 国立 小樽商科大学 2012年 第1問
次の[ ]の中を適当に補いなさい.

(1)$0 \leqq \theta \leqq \pi$のとき,関数$y=(2 \sin \theta-3 \cos \theta)^2-(2 \sin \theta-3 \cos \theta)+1$の最大値$M$と最小値$m$を求めると,$(M,\ m)=[ ]$.
(2)$x^2-4x-3=0,\ x>0$のとき,$2x^4+0x^3+1x^2+2x+2012=p+q\sqrt{7}$を満たす整数$p,\ q$は$(p,\ q)=[ ]$.
(3)平面上に$\mathrm{A}(a,\ b)$,$\mathrm{B}(-2,\ 0)$,$\mathrm{C}(0,\ 0)$がある.点$\mathrm{M}$は線分$\mathrm{AB}$ \\
の中点で点$\mathrm{X}$は線分$\mathrm{AC}$を$(1-t):t$に内分する点である.ただし, \\
$\displaystyle -4<a<0,\ b>0,\ 0<t<\frac{1}{2}$とする.直線$\mathrm{MX}$と直線$\mathrm{BC}$の \\
交点を$\mathrm{P}$,線分$\mathrm{AP}$と直線$\mathrm{BX}$の交点を$\mathrm{Q}$とする.三角形$\mathrm{BCX}$の面積を$S_1$,三角形$\mathrm{XPQ}$の面積を$S_2$とおくと,$\displaystyle \frac{S_1}{S_2}=[ ]$.
\img{2_2_2012_1}{40}
愛知教育大学 国立 愛知教育大学 2012年 第2問
$a$を実数の定数とし,関数
\[ y=\cos 2x-2a \cos x+a^2-2a+3 \]
を考える.以下の問いに答えよ.

(1)$y$の最小値が$\displaystyle \frac{1}{2}$となるような$a$の値を求めよ.
(2)$(1)$で求めた$a$のもとで,$y$の最小値を与える$x$の値を$0 \leqq x \leqq \pi$の範囲で求めよ.
奈良教育大学 国立 奈良教育大学 2012年 第1問
$a>0$とする.次の関数$f(x)$について,$0 \leqq x \leqq 1$における最大値および最小値を求めよ.
\[ f(x)=x^3-a^2x \]
東京農工大学 国立 東京農工大学 2012年 第4問
区間$0 \leqq x \leqq 2\pi$で定められた関数$\displaystyle f(x)=\int_0^{2\pi} (\sin |x-t|) \cos 2t \, dt+\frac{2}{3} \cos x$の最大値,最小値を求めよ.また,最大値を与える$x$の値と最小値を与える$x$の値をすべて求めよ.
電気通信大学 国立 電気通信大学 2012年 第2問
区間$0 \leqq x \leqq \pi$で連続な関数$f(x)$に対して,定積分
\[ I=\int_0^\pi \{t \sin x-f(x) \}^2 \, dx \quad (t \text{は実数}) \]
を考える.定数$c_1,\ c_2,\ c_3$を
\[ c_1=\int_0^\pi \sin^2 x \, dx,\quad c_2=\int_0^\pi f(x) \sin x \, dx,\quad c_3=\int_0^\pi \{f(x)\}^2 \, dx \]
と定めるとき,以下の問いに答えよ.

(1)$I$を,$t$および$c_1,\ c_2,\ c_3$を用いて表せ.
(2)$c_1$の値を求めよ. \\
以下では,$I$を最小にする$t$の値を$t_0$とし,その最小値を$I_0$とする.
(3)$t_0$を$c_2$を用いて表せ.また,$I_0$を$c_2,\ c_3$を用いて表せ.
(4)次の定積分$A,\ B$の値を求めよ.
\[ A=\int_0^\pi x \sin x \, dx,\quad B=\int_0^\pi x \cos x \, dx \]
(5)$f(x)=x(\pi-x)$のとき,$c_2,\ c_3$および$I_0$の値をそれぞれ求めよ.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
鳥取大学 国立 鳥取大学 2012年 第4問
点$\mathrm{A}(1,\ 2,\ 4)$を通り,ベクトル$\overrightarrow{n}=(-3,\ 1,\ 2)$に垂直な平面を$\alpha$とする.平面$\alpha$に関して同じ側に$2$点$\mathrm{P}(-2,\ 1,\ 7)$,$\mathrm{Q}(1,\ 3,\ 7)$がある.次の問いに答えよ.

(1)平面$\alpha$に関して点$\mathrm{P}$と対称な点$\mathrm{R}$の座標を求めよ.
(2)平面$\alpha$上の点で,$\mathrm{PS}+\mathrm{QS}$を最小にする点$\mathrm{S}$の座標とそのときの最小値を求めよ.
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第5問
$I(a)$を
\[ I(a)=\int_{-1}^1 |x^2-a| \, dx \]
で定義する.このとき次の問いに答えよ.

(1)$a \leqq 0$のとき$I(a)$の最小値を求めよ.
(2)$a \geqq 1$のとき$I(a)$の最小値を求めよ.
(3)$0<a<1$のとき,$t=\sqrt{a}$とおいて$I(a)$を$t$で表し,$I(a)$の最小値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。