タグ「最小値」の検索結果

80ページ目:全1222問中791問~800問を表示)
徳島大学 国立 徳島大学 2012年 第1問
$a>0$とする.曲線$y=a^3x^2$を$C_1$とし,曲線$\displaystyle y=-\frac{1}{x} (x>0)$を$C_2$とする.また,$C_1$と$C_2$に同時に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と曲線$C_1,\ C_2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$a$が$a>0$の範囲を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
徳島大学 国立 徳島大学 2012年 第2問
$a>0$とする.曲線$y=a^3x^2$を$C_1$とし,曲線$\displaystyle y=-\frac{1}{x} (x>0)$を$C_2$とする.また,$C_1$と$C_2$に同時に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と曲線$C_1,\ C_2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$a$が$a>0$の範囲を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
徳島大学 国立 徳島大学 2012年 第3問
$f(x)=\sqrt{x}e^{-x} (0 \leqq x \leqq 1)$とする.

(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
徳島大学 国立 徳島大学 2012年 第2問
$f(x)=\sqrt{x}e^{-x} (0 \leqq x \leqq 1)$とする.

(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第3問
次の問いに答えよ.

(1)放物線$C:y=x^2+6$,直線$\ell:y=2x$を考える.点Pが$C$上を,点Qが$\ell$上をそれぞれ動くとき,PQの最小値を求めよ.
(2)(1)で,PQが最小値をとる$C$上の点P,$\ell$上の点Qに対し,線分PQ,放物線$C$,直線$\ell$,及び$y$軸で囲まれた領域の面積を求めよ.
(3)放物線$C:y=x^2+6$,直線$\ell_k:y=2kx-5$を考える.点Pが$C$上を,点Rが$\ell_k$上をそれぞれ動いたときのPRの最小値が1となる$k$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
次の問いに答えよ.

(1)放物線$C:y=x^2+6$,直線$\ell:y=2x$を考える.点Pが$C$上を,点Qが$\ell$上をそれぞれ動くとき,PQの最小値を求めよ.
(2)(1)で,PQが最小値をとる$C$上の点P,$\ell$上の点Qに対し,線分PQ,放物線$C$,直線$\ell$,及び$y$軸で囲まれた領域の面積を求めよ.
(3)放物線$C:y=x^2+6$,直線$\ell_k:y=2kx-5$を考える.点Pが$C$上を,点Rが$\ell_k$上をそれぞれ動いたときのPRの最小値が1となる$k$の値を求めよ.
島根大学 国立 島根大学 2012年 第2問
$a$を実数とする.次の問いに答えよ.

(1)放物線$y=x^2-x+3a$と直線$y=3ax+2$は異なる$2$つの交点をもつことを示せ.
(2)$(1)$の放物線と直線の$2$つの交点をむすぶ線分の中点を$\mathrm{M}$とする.$a$が実数全体を動くとき,$\mathrm{M}$の$y$座標の最小値を求めよ.
(3)$(1)$の放物線と直線の$2$つの交点の$x$座標を$\alpha$と$\beta$とする.$a$が実数全体を動くとき,$|\alpha|+|\beta|$の最小値を求めよ.
島根大学 国立 島根大学 2012年 第3問
$t$を実数とし,$\displaystyle f(t)=\int_0^2 |x^2-2x+1-t^2| \, dt$とおく.このとき,次の問いに答えよ.

(1)$f(0)$と$f(1)$の値を求めよ.
(2)$0<t<1$のとき,$f(t)$を求めよ.
(3)$t$が$0 \leqq t \leqq 1$の範囲にあるとき,$f(t)$の最小値を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第3問
1辺の長さが1の正三角形ABCと,線分BCを$1:2$に内分する点Dが与えられている.実数$x \ (0 \leqq x \leqq 1)$に対し,線分AB上の点Pと線分AC上の点Qを$\text{AP}=\text{CQ}=x$となるように定めるとき,次の問いに答えよ.

(1)線分ADの長さを求めよ.
(2)三角形DPQの面積$S$を$x$の式で表せ.
(3)(2)の$S$について,$S$の最大値と最小値を求めよ.
(4)(2)の$S$の値が$\displaystyle \frac{\sqrt{3}}{8}$となるとき,$x$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第4問
関数$f(x)=x^3-3x^2+2$について,次の問いに答えよ.

(1)$y=f(x)$の増減を調べ,極値を求めよ.また,グラフの概形をかけ.
(2)$\displaystyle -\frac{a}{2} \leqq x \leqq a$における$f(x)$の最大値$M$を求めよ.ただし,$a$は定数で$a>0$とする.
(3)$\displaystyle -\frac{a}{2} \leqq x \leqq a$における$f(x)$の最小値$m$を求めよ.ただし,$a$は定数で$a>0$とする.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。