タグ「最小値」の検索結果

73ページ目:全1222問中721問~730問を表示)
大阪市立大学 公立 大阪市立大学 2013年 第3問
$a>1$を満たす定数$a$に対し,座標が$(a,\ a)$である点を$\mathrm{A}$とする.関数$\displaystyle y=\frac{1}{x} (x>0)$のグラフ上を動く点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t} \right)$をとり,$t>0$で定義された関数$f(t)$を,長さ$\mathrm{AP}$を用いて$f(t)=\mathrm{AP}^2$で定める.次の問いに答えよ.

(1)$f(t)$を$t$と$a$を用いて表せ.
(2)$f^\prime(t)=0$となる$t (t>0)$の値を求めよ.
(3)$\mathrm{AP}$が最小になるような点$\mathrm{P}$の座標と,$\mathrm{AP}$の最小値を求めよ.
九州歯科大学 公立 九州歯科大学 2013年 第3問
$\displaystyle y=x^2-4x+5+\frac{1}{x^2-4x+5}$とおくとき,次の問いに答えよ.ただし,$\displaystyle \frac{3}{2} \leqq x \leqq 3$とする.

(1)$y$の最大値$M$と最小値$m$の値を求めよ.
(2)$t=x^2-4x+5$とおくとき,$\displaystyle z=t^3-6t^2+12t-12+\frac{12}{t}-\frac{6}{t^2}+\frac{1}{t^3}$を$y$を用いて表せ.
(3)$z$の最大値$N$と最小値$n$の値を求めよ.
(4)$K(\log_{64}M+\log_{64}m-\log_{64}N-\log_{64}n)=1$をみたす自然数$K$の値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第1問
$\overrightarrow{a}=(1,\ 0,\ 1)$,$\overrightarrow{b}=(1,\ 1,\ 0)$とする.点$\mathrm{P}(1,\ 1,\ 0)$を通り,$\overrightarrow{a}$に平行な直線を$\ell_1$とし,点$\mathrm{Q}(0,\ 0,\ 1)$を通り,$\overrightarrow{b}$に平行な直線を$\ell_2$とする.以下の問いに答えなさい.

(1)$\ell_1$上の点$\mathrm{R}$と$\ell_2$上の点$\mathrm{S}$を通る直線$\ell_3$が,$\ell_1$と$\ell_2$に垂直であるとする.このとき,$\mathrm{R}$,$\mathrm{S}$の座標を求めなさい.
(2)$\ell_1$上の$2$点$\mathrm{E}$,$\mathrm{F}$が$\mathrm{EF}=2$を満たしながら動き,$\ell_2$上を点$\mathrm{G}$が動くとき,$\triangle \mathrm{EFG}$の面積の最小値を求めなさい.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第3問
関数$y=\sin^3 x+\cos^3 x (0 \leqq x<2\pi)$について,以下の問いに答えよ.

(1)$t=\sin x+\cos x$として,$\sin x \cos x$と$y$をそれぞれ$t$の関数で表せ.
(2)(1)で定めた$t$のとりうる値の範囲を求めよ.
(3)$y$の最大値と最小値,および,そのときの$x$の値をそれぞれ求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第4問
$s$を実数とするとき,座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(s,\ |1-s|)$に対して,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を$t$とおく.$t$を$s$の関数で表せ.また,その$s$の関数を$f(s)$とおくとき,$t=f(s)$のグラフを描け.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とするとき,$\cos \theta \leqq 0$となる$s$の範囲を求めよ.
(3)線分$\mathrm{AB}$の中点を$\mathrm{C}$とするとき,線分$\mathrm{OC}$の長さの最小値を求めよ.また,そのときの$s$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
原点を$\mathrm{O}$とする$xyz$空間内に$1$辺の長さが$1$の正四面体$\mathrm{OPQR}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通り$z$軸に平行な$3$直線と$xy$平面との交点をそれぞれ$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$,$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の面積をそれぞれ$S$,$S_1$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の$3$点を通る平面と$xy$平面のなす角を$\theta$とするとき,$S_1=S |\cos \theta|$を示せ.
(2)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の周上を含む内部にあるとき,$z$軸と$\triangle \mathrm{PQR}$の交点を$\mathrm{A}$とする.このとき正四面体$\mathrm{OPQR}$の体積$V$は$\displaystyle V=\frac{1}{3} \mathrm{OA} \cdot S_1$となることを示し,$S_1$の最小値を求めよ.
(3)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の外部にあり,線分$\mathrm{OP}^\prime$と線分$\mathrm{Q}^\prime \mathrm{R}^\prime$が交点$\mathrm{B}$をもつとき,点$\mathrm{B}$を通り$z$軸に平行な直線と,直線$\mathrm{OP}$および直線$\mathrm{QR}$との交点をそれぞれ$\mathrm{C}$,$\mathrm{D}$とする.このとき四角形$\mathrm{OQ}^\prime \mathrm{P}^\prime \mathrm{R}^\prime$の面積を$S_2$とすると$\displaystyle V=\frac{1}{3} \mathrm{CD} \cdot S_2$となることを示し,$S_2$の最大値を求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第1問
以下の各問に答えよ.

(1)ある大学の売店では年会費を$5,000$円払えば会員となり,品物を$5 \, \%$引きで買うことができる.$1$個$380$円の品物を買うとき,何個以上買うと,会員になった方が,会員にならないよりも合計金額が安くなるか答えよ.
(2)$2$次関数$y=3x^2+6nx+12n$がある.

(i) この$2$次関数の最小値$m$を,$n$の関数で表せ.
(ii) $n$の値を変化させて,$(1)$における最小値$m$が最も大きくなるときの$n$の値と,そのときの$m$の値を求めよ.

(3)底面の半径が$6$,高さが$8$の円錐に内接する球$\mathrm{Q}$の表面積と体積を求めよ.ただし,円周率は$\pi$とする.
札幌医科大学 公立 札幌医科大学 2013年 第4問
関数$f(x)=x \cos x-\sin x$を区間$I:\pi \leqq x \leqq 3\pi$で考える.

(1)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(2)区間$I$における関数$f(x)$の最大値と最小値を求めよ.区間$I$において$f(x)=0$をみたす$2$点を$x=s,\ t$とする.ただし$s<t$とする.
(3)$s$と$t$は,それぞれ次の$4$つの区間

$\displaystyle \pi \leqq x \leqq \frac{3}{2}\pi,\quad \frac{3}{2}\pi \leqq x \leqq 2\pi,$

$\displaystyle 2\pi \leqq x \leqq \frac{5}{2}\pi,\quad \frac{5}{2}\pi \leqq x \leqq 3\pi$

のどれに入るか.
(4)$x$軸の$4\pi-t \leqq x \leqq 2\pi$の部分,直線$x=4\pi-t$,直線$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$S$とする.また,$x$軸の$2\pi \leqq x \leqq t$の部分,$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$T$とする.このとき$S$と$T$の大小を比較せよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第1問
関数$f(x)$を,
\[ f(x)=\left\{ \begin{array}{ll}
2x+1 & \displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right) \\
2x+\sin x & \displaystyle \left( x \geqq \frac{\pi}{2} \right) \phantom{\frac{[ア]}{2}}
\end{array} \right. \]
と定め,関数$g(x)$を,$g(x)=f(2x)-2f(x) (0 \leqq x \leqq 2\pi)$と定める.

(1)関数$g(x)$の最大値と最小値,およびそれらをとる$x$の値を求めよ.
(2)曲線$C:y=g(x)$の概形を描け.ただし,変曲点に留意しなくてよい.
(3)区間$[0,\ 2\pi]$で,曲線$C$と$x$軸の間にある部分を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第3問
隣り合う辺の長さが$a,\ b$の長方形がある.その各辺の中点を順に結んで四角形をつくる.さらにその四角形の各辺の中点を順に結んで四角形をつくる.このような操作を無限に続ける.

(1)最初の長方形も含めたこれらの四角形の周の長さの総和$S$を求めよ.
(2)関係$a+b=1$を満たしながら$a,\ b$が動くときの$S$の最小値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。