タグ「最小値」の検索結果

69ページ目:全1222問中681問~690問を表示)
大阪歯科大学 私立 大阪歯科大学 2013年 第2問
$2$次関数$y=2x^2-4ax+a^2+a$の$0 \leqq x \leqq 3$における最小値が$0$となるような定数$a$の値をすべて求めよ.
神戸薬科大学 私立 神戸薬科大学 2013年 第6問
関数$f(x)=2x^3-3x^2-12x$の区間$-2 \leqq x \leqq 1$での最大値は$x=[ ]$のとき$[ ]$であり,最小値は$x=[ ]$のとき$[ ]$である.また,区間$-2 \leqq x \leqq 4$のとき,$f(x)$の最大値から最小値を引いた値は$[ ]$である.
大同大学 私立 大同大学 2013年 第3問
$\displaystyle f(x)=\frac{\cos 5x}{\cos x} \left( 0<x<\frac{\pi}{2} \right)$とする.

(1)$\cos 4x=a \cos^2 2x+b$をみたす定数$a,\ b$の値を求めよ.
(2)$\cos 4x=l \cos^4 x+m \cos^2 x+n$をみたす定数$l,\ m,\ n$の値を求めよ.
(3)$\sin 4x \sin x=(p \cos^4 x+q \cos^2 x+r) \cos x$をみたす定数$p,\ q,\ r$の値を求めよ.
(4)$f(x)$の最小値を求めよ.
大阪薬科大学 私立 大阪薬科大学 2013年 第1問
次の問いに答えなさい.

(1)$2$次方程式$x^2+x+p=0$の$2$解$\alpha,\ \beta$に対して$\alpha^2-\beta^2=3$となるとき,$p=[ ]$である.
(2)$xy$座標平面上で,$x$座標と$y$座標がいずれも整数である点を格子点という.$x \geqq 0$,$y \geqq 0$,$x+2y \leqq 100$を同時に満たす格子点の個数は$[ ]$である.
(3)関数$f(x)=a(\log_3 x)^2+\log_9 bx$が,$\displaystyle x=\frac{1}{3}$で最小値$\displaystyle \frac{1}{4}$をとるとき,$(a,\ b)=[ ]$である.
(4)関数$\displaystyle y=2 \sin \left( 2x+\frac{\pi}{2} \right)$のグラフを描きなさい.
(5)表と裏が等確率で出るコインを$n$回投げ,表が出る回数が$0$回ならば$0$点,$1$回ならば$x$点,$2$回以上ならば$y$点とするゲームを考え,その点数の期待値を$E_n$とする.$n \geqq 2$の$n$に対して,不等式$E_n \geqq y$が$n$によらずに成り立つとき,$x$と$y$の間の関係を調べなさい.ただし,$x$と$y$は正とする.
近畿大学 私立 近畿大学 2013年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$を$1:2$の比に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{Q}$,$\mathrm{R}$を辺$\mathrm{OC}$上の点とするとき,

(1)線分$\mathrm{PQ}$の長さを求めよ.
(2)三角形$\mathrm{PQC}$の面積を求めよ.
(3)$\mathrm{R}$が辺$\mathrm{OC}$上を動くとき,三角形$\mathrm{PQR}$の面積の最小値を求めよ.
(4)頂点$\mathrm{O}$から三角形$\mathrm{PQR}$を含む平面に垂線$\mathrm{OH}$を引く.点$\mathrm{H}$が三角形$\mathrm{PQR}$の内部にあるとき,$\mathrm{OR}=r$の取りうる値の範囲を求めよ.ただし三角形の内部とはその周を含まないものとする.
沖縄国際大学 私立 沖縄国際大学 2013年 第1問
以下の各問いに答えなさい.

(1)関数$y=(x+1)(3-x)$のグラフの頂点の座標を求めなさい.
(2)頂点の座標が点$(-2,\ 1)$で,点$(-3,\ -1)$を通る$2$次関数を求めなさい.
(3)$(2)$で求めた$2$次関数のグラフを$x$軸方向に$-1$,$y$軸方向に$-2$だけ平行移動するとき,$2$次関数$y=ax^2+bx+c$のグラフになるとする.この定数$a,\ b,\ c$の値を求めなさい.
(4)$a$を正の定数とする.$2$次関数$y=ax^2+2ax+b$は,区間$-1 \leqq x \leqq 0$における最大値が$2$,最小値が$-2$とする.このとき,定数$a,\ b$の値を求めなさい.
大阪薬科大学 私立 大阪薬科大学 2013年 第2問
次の問いに答えなさい.

実数$t$に対し,一辺の長さが$1$の正三角形$\mathrm{OAB}$の辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{AB}$を$2t:(1-2t)$に内分する点を$\mathrm{Q}$,辺$\mathrm{BO}$を$3t:(1-3t)$に内分する点を$\mathrm{R}$とする.ただし,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は正三角形$\mathrm{OAB}$の辺上にあり,いずれの頂点とも一致しないものとする.

(1)$t$がとる値の範囲は$[ ]$である.
(2)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.

(i) $\overrightarrow{a} \cdot \overrightarrow{b}=[ ]$である.
(ii) $\overrightarrow{\mathrm{PQ}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を使って表すと,$\overrightarrow{\mathrm{PQ}}=[ ]$となる.
(iii) $\displaystyle \angle \mathrm{QPR}=\frac{\pi}{2}$となるのは,$t=[ ]$のときである.

(3)三角形$\mathrm{PQR}$の面積を$S$とする.$S$を$t$を使って表し,また$S$の最小値を求めなさい.
近畿大学 私立 近畿大学 2013年 第3問
関数$f(x)$は次の等式を満たすものとする.
\[ \int_1^x f(t) \, dt=x^3+3x^2 \int_0^1 f(t) \, dt+x+k \]
ただし,$k$は定数とする.

(1)$f(x)=[ア]x^2-[イ]x+[ウ]$であり,$k=[エ]$である.関数$f(x)$は$x=[オ]$のとき最小値$[カキ]$をとる.
(2)関数$y=g(x)$のグラフと関数$y=f(x)$のグラフが,直線$x=3$に関して対称であるとすると
\[ g(x)=[ク]x^2-[ケコ]x+[サシ] \]
である.$y=g(x)$のグラフと$x$軸との共有点の$x$座標は
\[ \frac{[スセ] \pm \sqrt{[ソ]}}{[タ]} \]
であり,$y=g(x)$のグラフと$x$軸で囲まれた部分の面積は
\[ \frac{[チ] \sqrt{[ツ]}}{[テ]} \]
である.
近畿大学 私立 近畿大学 2013年 第1問
$xy$平面に正三角形$\mathrm{ABC}$があり,$3$頂点の座標はそれぞれ$\mathrm{A}(0,\ \sqrt{3})$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(1,\ 0)$となっている.線分$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{CA}$の中点を$\mathrm{E}$とする.また$\mathrm{P}$は辺$\mathrm{AB}$上を動く点とし,$\mathrm{Q}$は辺$\mathrm{AC}$上を動く点とする.

(1)直線$\mathrm{AB}$に関して$\mathrm{D}$と対称な点$\mathrm{T}$の座標は$([ア],\ [イ])$である.
(2)線分$\mathrm{TE}$を$s:1-s$の比に内分する点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{BR}}=m \overrightarrow{\mathrm{BA}}+n \overrightarrow{\mathrm{BC}}$と表すと$m=[ウ]$,$n=[エ]$となる.ただし$m,\ n$は$s$の$1$次式である.また$s=[オ]$のとき$\mathrm{R}$は線分$\mathrm{AB}$上にある.
(3)$\mathrm{DP}+\mathrm{PE}$の最小値は$[カ]$である.またそのとき$\mathrm{BP}=[キ]$となる.
(4)$\mathrm{DP}+\mathrm{PQ}+\mathrm{QD}$の最小値は$[ク]$である.またそのとき$\tan \angle \mathrm{BPQ}=[ケ]$となる.
九州産業大学 私立 九州産業大学 2013年 第1問
次の問いに答えよ.

(1)$3+\sqrt{2}$の小数部分を$a$とするとき,次の計算をせよ.

(i) $\displaystyle a+\frac{1}{a}=[ア] \sqrt{[イ]}$である.
(ii) $\displaystyle a^3-\frac{1}{a^3}=[ウエオ]$である.

(2)方程式$8 \cdot 4^x-129 \cdot 2^x+16=0$の解は$x=[カキ]$と$x=[ク]$である.
(3)$3$点$(0,\ 0)$,$(\cos {30}^\circ,\ \sin {30}^\circ)$,$(\sqrt{2} \cos \alpha,\ \sqrt{2} \sin \alpha)$を頂点とする三角形の面積が$\displaystyle \frac{1}{2}$であるとき$\alpha$の値は$[ケコ]^\circ$である.ただし${30}^\circ<\alpha \leqq {90}^\circ$とする.
(4)点$\mathrm{P}$が$xy$平面の原点$\mathrm{O}$にある.コインを投げ,表が出たならば点$\mathrm{P}$を$x$軸方向に$1$だけ動かし,裏が出たならば点$\mathrm{P}$を$y$軸方向に$1$だけ動かす.コインを$5$回投げたときの点$\mathrm{P}$の座標を$(x,\ y)$とする.

(i) $x$の最大値は$[サ]$,最小値は$[シ]$である.
(ii) $(x,\ y)=(2,\ 3)$となる場合の数は$[スセ]$通りである.

(iii) $(x,\ y)=(2,\ 3)$となる確率は$\displaystyle \frac{[ソ]}{[タチ]}$である.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。