タグ「最小値」の検索結果

66ページ目:全1222問中651問~660問を表示)
日本女子大学 私立 日本女子大学 2013年 第3問
平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$がある.$t$を$\displaystyle 0 \leqq t<\frac{1}{2}$を満たす実数とする.点$\mathrm{P}$を線分$\mathrm{OA}$上で$\mathrm{AP}=t$となるようにとる.直線$y=1$上の$\mathrm{A}$より右側の部分に点$\mathrm{S}$を$\mathrm{PO}=\mathrm{PS}$となるようにとる.$\angle \mathrm{OPS}$の二等分線が$x$軸と交わる点を$\mathrm{R}$とする.

(1)$\mathrm{AS}$の長さを$t$で表せ.
(2)$\mathrm{OR}$の長さを$t$で表せ.
(3)$t$が$\displaystyle 0 \leqq t<\frac{1}{2}$の範囲を動くとき,$\mathrm{PR}$の長さの最小値を求めよ.また,$\mathrm{PR}$の長さを最小にする$t$の値を求めよ.
(図は省略)
北海道薬科大学 私立 北海道薬科大学 2013年 第4問
関数$\displaystyle f(x)=2 \cos^3 x-8 \sin x \cos x-2 \sin^3 x+6 \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$について,次の設問に答えよ.

(1)$\cos x-\sin x$の最小値は$[アイ]$であり,最大値は$[ウ]$である.
(2)$f(x)$を$t=\cos x-\sin x$で表した関数を$g(t)$とおくと
\[ g(t)=[エ]t^3+[オ]t^2+[カ]t+[キ] \]
である.
(3)$f(x)$の最大値は$[ク]$,最小値は$\displaystyle \frac{[ケコ]}{[サシ]}$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第1問
次の各設問に答えよ.

(1)$a,\ b$が有理数である$x^2+ax+b=0$の一つの解が$2+\sqrt{3}$であるとき方程式
\[ ax^2-7x+2b=0 \]
の解は$\displaystyle x=[アイ],\ \frac{[ウ]}{[エ]}$である.
(2)$x$を実数とすると$\displaystyle x^2+\frac{100}{x^2+1}$の最小値は$[オカ]$であり,そのときの$x$の値は$[キク],\ [ケ]$である.
(3)$\mathrm{RISUKU}$の$6$文字をバラバラにして一列に並べるとき,$\mathrm{KUSURI}$という文字になる確率は$\displaystyle \frac{[コ]}{[サシス]}$である.
(4)$\displaystyle \int_{-3}^3 (x+1) |x-2| \, dx$の値は$\displaystyle \frac{[セソ]}{[タ]}$である.
神奈川大学 私立 神奈川大学 2013年 第1問
次の空欄を適当に補え.

(1)$x$が$x^2+x+1=0$を満たすとする.このとき$2x^4-x^3-2x^2-4x+2$の値は$[$(\mathrm{a])$}$である.
(2)方程式$3^{2x+1}+2^3 \cdot 3^x-3=0$を解くと$x=[$(\mathrm{b])$}$である.
(3)$2$つの単位ベクトル$\overrightarrow{a}$,$\overrightarrow{b}$に対して,$2 \overrightarrow{a}+3 \overrightarrow{b}$の大きさが$\sqrt{7}$のとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$[$(\mathrm{c])$}$である.
(4)$t>0$とする.$3$次関数$y=x^3-3x^2-9x+t$のグラフと$x$軸との共有点がただ$1$つのとき,定数$t$の値の範囲は$[$(\mathrm{d])$}$である.
(5)$\mathrm{A}$を含む男子$4$人と$\mathrm{B}$を含む女子$5$人が$1$列に並ぶ.このとき,$\mathrm{A}$と$\mathrm{B}$が隣り合う確率は$[$(\mathrm{e])$}$である.また,男子が隣り合わない確率は$[$(\mathrm{f])$}$である.
(6)関数$\displaystyle f(x)=\frac{1}{2}x^2-3 \log (x+2)$の最小値は$[$(\mathrm{g])$}$である.
津田塾大学 私立 津田塾大学 2013年 第2問
次の問に答えよ.

(1)$0 \leqq \theta \leqq 2\pi$のとき,$\sin \theta+\cos \theta$の最大値と最小値を求めよ.
(2)$0 \leqq \theta \leqq 2\pi$のとき,$\sin^3 \theta+\cos^3 \theta$の最大値と最小値を求めよ.
愛知工業大学 私立 愛知工業大学 2013年 第2問
$xy$平面において,曲線$\displaystyle y=\frac{1}{x} (x>0)$を$C_1$とする.

(1)点$(x,\ y)$が曲線$C_1$上を動くとき,$x^2+2y$の最小値$k$を求めよ.
(2)$(1)$の$k$の値に対して,曲線$x^2+2y=k$を$C_2$とする.曲線$C_2$と$x$軸の正の部分との交点を$(a,\ 0)$とする.このとき,$2$つの曲線$C_1$,$C_2$および直線$x=a$で囲まれた部分の面積を求めよ.
北里大学 私立 北里大学 2013年 第1問
次の$[ ]$にあてはまる答を記せ.ただし,$(5)$において,必要ならば$\log_{10}2=0.3010$を用いてよい.

(1)$\mathrm{OA}:\mathrm{OB}=1:3$である三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{N}$とし,$\angle \mathrm{AOB}$の大きさを$\theta$とする.

(i) $\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{a}$と$\overrightarrow{b}$を用いて$\overrightarrow{\mathrm{NA}}$を表すと,$\overrightarrow{\mathrm{NA}}=[ ] \overrightarrow{a}-[ ] \overrightarrow{b}$である.
(ii) $\overrightarrow{\mathrm{ON}}$と$\overrightarrow{\mathrm{NA}}$が垂直であるとき,$\cos \theta$の値は$[ ]$である.

(2)$(x+2y+3z)^6$の展開式における$x^4y^2$の係数は$[ ]$であり,$x^3y^2z$の係数は$[ ]$である.
(3)点$(x,\ y)$が不等式$x^2+y^2 \leqq 4$の表す領域を動くとする.このとき,$3x+y$は,$x=[ ]$,$y=[ ]$において最大値$[ ]$をとり,$x=[ ]$,$y=[ ]$において最小値$[ ]$をとる.
(4)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つの袋があり,$\mathrm{A}$には赤球$2$個と白球$2$個,$\mathrm{B}$には白球$1$個と青球$3$個,さらに,$\mathrm{C}$には赤球$2$個と白球$1$個と青球$1$個が入っている.いま,$\mathrm{A}$から$1$個の球を取り出し,$\mathrm{B}$から$1$個の球を取り出し,$\mathrm{C}$から$1$個の球を取り出す.

(i) 取り出した$3$個の球の色が$1$種類となる確率は$[ ]$である.
(ii) 取り出した$3$個の球の色が$2$種類となる確率は$[ ]$である.
(iii) 取り出した$3$個の球の色が$3$種類となる確率は$[ ]$である.

(5)条件$a_1=5$,$a_{n+1}=2a_n-3$によって定まる数列$\{a_n\}$の一般項は$a_n=[ ]$で与えられる.この数列の初項から第$n$項までの和を$S_n$とおくとき,$S_8$の値は$[ ]$であり,不等式$\displaystyle \frac{S_n}{3}>n+16666$を満たす正の整数$n$のうちで最小のものは$[ ]$である.
埼玉工業大学 私立 埼玉工業大学 2013年 第2問
$y=3 \cos \theta-\sin^2 \theta+3$に関し,以下の問いに答えよ.ただし,$0 \leqq \theta<2\pi$とする.

(1)$\theta=[ ] \pi$のとき,$y$は最小値$[ ]$をとる.$\theta=[ ] \pi$のとき,$y$は最大値$[ ]$をとる.
(2)$\displaystyle y=\frac{15}{4}$となるときの$\theta$の値は$[ ]$個あり,それらの中で最大のものは$\displaystyle \theta=\frac{[ ]}{[ ]} \pi$である.
千葉工業大学 私立 千葉工業大学 2013年 第2問
次の各問に答えよ.

(1)関数$f(x)=8 \cos 2x+9 \tan^2 x$は,$\displaystyle f(x)=[アイ] \cos^2 x+\frac{[ウ]}{\cos^2 x}-[エオ]$と変形できる.$\displaystyle 0<x<\frac{\pi}{2}$において,$f(x)$は$\displaystyle x=\frac{[カ]}{[キ]} \pi$のとき最小値$[ク]$をとる.
(2)$x$の不等式$\log_a(x+1)^2>\log_a \{9(x+5)\}$の解は,$a>1$のとき,$[ケコ]<x<[サシ]$,$[スセ]<x$であり,$0<a<1$のときは,$[サシ]<x<[ソタ]$,$[ソタ]<x<[スセ]$である.
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。