タグ「最小値」の検索結果

64ページ目:全1222問中631問~640問を表示)
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \frac{2}{\sqrt{6}-2}$の整数部分を$a$,小数部分を$b$とする.このとき,$b$を$\sqrt{6}$を用いて表すと$b=[ア]$である.また,$a^2-ab-b^2=[イ]$である.
(2)実数$a,\ b$に対して,$3$次方程式$ax^3+(a-2)x^2+(b-3)x-b=0$が$x=1+i$を解として持つとき,$(a,\ b)=[ウ]$であり,この方程式の実数解は$[エ]$である.
(3)$2$次方程式$\displaystyle ax^2-\frac{1}{5}x-\frac{12}{25}=0$の$2$つの解がそれぞれ$\sin \theta$,$\cos \theta$であるとき,$a$の値は$[オ]$であり,$\sin^3 \theta+\cos^3 \theta$の値は$[カ]$である.
(4)直線$x-y=1$上を動く点$\mathrm{P}$がある.$3$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-3,\ 0)$,$\mathrm{C}(4,\ -1)$に対して,$\mathrm{PA}^2+\mathrm{PB}^2+\mathrm{PC}^2$の最小値は$[キ]$であり,このときの$\mathrm{P}$の座標は$[ク]$である.
(5)実数$a$に対して,$x$についての方程式$4^x+a \cdot 2^{x+2}+3a+1=0$が異なる$2$つの実数解を持つとき,$a$のとりうる値の範囲は$[ケ]<a<[コ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)すべての実数$x$について,$2$次不等式$2x^2-6ax+3a>-4$が成り立つとき,$a$の値の範囲は$[ア]$である.また,$a>0$の範囲で,$2$次関数$y=2x^2-6ax+3a$の最小値が$-4$となるとき,その最小値をとる$x$の値は$[イ]$である.
(2)$\displaystyle \tan \theta+\frac{1}{\tan \theta}=4 (0<\theta<\frac{\pi}{2})$のとき,$\sin \theta \cos \theta=[ウ]$であり,$\sin^3 \theta+\cos^3 \theta=[エ]$である.
(3)実数$k$について,方程式$x^2+y^2-6kx+4(k+1)y+14k^2+7k+2=0$が半径$\sqrt{2}$以上の円を表すとき,$k$の値の範囲は$[オ]$である.また,その円が$y$軸に接するときの円の半径は$[カ]$である.
(4)$12^5$は$[キ]$桁の数であり,$12^n$が$12$桁の数になるときの整数$n$は$[ク]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(5)展開図が円と半径$l$の扇形からなる直円錐を考える.$l$が一定のとき,この円錐の体積を最大にするような円錐の高さを,$l$で表すと$[ケ]$であり,扇形の中心角は$[コ]$度である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)実数$a$に対して,$2$つの関数
\[ f(x)=x^2+4ax+8,\quad g(x)=-x^2+(2a-2)x-10 \]
を考える.このとき,$g(x) \geqq f(x)$となる$x$が存在するような$a$の値の範囲は$[ア]$である.また,$f(x)$の最小値が$g(x)$の最大値より大きくなるような$a$の値の範囲は$[イ]$である.
(2)$0 \leqq \theta<2\pi$のとき,$x=\sin \theta+\cos \theta$のとりうる値の範囲は$[ウ]$であり,$y=\sin 2\theta+2(\sin \theta+\cos \theta)$のとりうる値の範囲は$[エ]$である.
(3)以下の$4$つの数のうち,$1$番大きな数は$[オ]$であり,$1$番小さな数は$[カ]$である.
\[ 7^{777},\quad 10^{7 \log_{10}7},\quad 7^{(7^7)},\quad 7777777 \]
(4)$r$を正の実数とする.円$x^2+(y-1)^2=r^2$と曲線$y=x^2$が$x>0$の範囲に異なる$2$つの交点$\mathrm{P}$,$\mathrm{Q}$をもつような$r$の値の範囲は$[キ]$である.さらに,この$r$の範囲で$\displaystyle \mathrm{PQ}=\frac{\sqrt{5}}{2}$が成り立つ$r$の値は$r=[ク]$である.
甲南大学 私立 甲南大学 2013年 第1問
以下の問いに答えよ.

(1)大中小$3$個のサイコロを同時に投げる.大中小それぞれのサイコロの目を$x,\ y,\ z$とするとき,$\displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$となる確率を求めよ.
(2)正の実数$x$に対して定義された関数$y=2(\log_5 5x)^2+\log_5 (5x)^2+2 \log_5 x+2$の最小値と,そのときの$x$の値を求めよ.
甲南大学 私立 甲南大学 2013年 第1問
以下の問いに答えよ.

(1)大中小$3$個のサイコロを同時に投げる.大中小それぞれのサイコロの目を$x,\ y,\ z$とするとき,$\displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$となる確率を求めよ.
(2)正の実数$x$に対して定義された関数$y=2(\log_5 5x)^2+\log_5 (5x)^2+2 \log_5 x+2$の最小値と,そのときの$x$の値を求めよ.
昭和大学 私立 昭和大学 2013年 第4問
関数$f(x)=4(\sin x-\cos x)^3-3 \sin 2x (0 \leqq x \leqq \pi)$がある.以下の各問に答えよ.

(1)$t=\sin x-\cos x$とおく.$f(x)$を$t$の式で表せ.
(2)(1)の$t$のとり得る値の範囲を求めよ.
(3)$f(x)$の最大値とそのときの$x$の値を求めよ.
(4)$f(x)$の最小値とそのときの$x$の値を求めよ.
名城大学 私立 名城大学 2013年 第4問
$xy$平面上に,円$K:x^2+y^2=1$と放物線$C:y=x^2-2$がある.$K$上の点$\mathrm{P}(\cos \theta,\ \sin \theta) (\pi<\theta<2\pi)$における$K$の接線を$\ell$とし,$\ell$と$C$で囲まれる部分の面積を$S$とする.

(1)$\ell$の方程式を$\theta$を用いて表せ.
(2)$S$を$\theta$を用いて表せ.
(3)$S$の最小値とそのときの$\mathrm{P}$の座標を求めよ.
名城大学 私立 名城大学 2013年 第2問
点$\mathrm{A}(-1,\ 2)$を通り傾きが$m$の直線$\ell$と放物線$C:y=x^2$に対し,次の各問に答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$C$と$\ell$の$2$つの共有点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,差$\beta-\alpha$を$m$を用いて表せ.
(3)$\ell$と$C$で囲まれた図形の面積の最小値と,そのときの$m$の値を求めよ.
名城大学 私立 名城大学 2013年 第2問
$b<a^2$を満たす点$\mathrm{P}(a,\ b)$から放物線$C:y=x^2$へ$2$本の接線$\ell_1,\ \ell_2$を引き,その接点をそれぞれ$(\alpha,\ \alpha^2)$,$(\beta,\ \beta^2)$とする.ただし$\alpha<\beta$にとる.放物線$C$と$2$直線$\ell_1,\ \ell_2$で囲まれた部分の面積を$S$とするとき,次の各問に答えよ.

(1)$a$と$b$を$\alpha$と$\beta$を用いてそれぞれ表せ.
(2)$S$を$\alpha$と$\beta$を用いて表せ.
(3)点$\mathrm{P}$が直線$y=x-2$上を動くときの$S$の最小値と,それを与える$\mathrm{P}$の座標を求めよ.
日本女子大学 私立 日本女子大学 2013年 第1問
関数$\displaystyle f(x)=\int_0^4 |t(t-x)| \, dt$について,実数$x$が$-5 \leqq x \leqq 5$の範囲を動くとき,次の問いに答えよ.

(1)$f(x)$の最大値と,最大値を与える$x$の値を求めよ.
(2)$f(x)$の最小値と,最小値を与える$x$の値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。