タグ「最小値」の検索結果

50ページ目:全1222問中491問~500問を表示)
成城大学 私立 成城大学 2014年 第3問
$x$の関数$\displaystyle f(x)=-\frac{1}{3}x^3+\frac{1}{2}ax^2-a$の$0 \leqq x \leqq 2$における最大値を$g(a)$とおく.ただし,$a$は実数とする.

(1)$g(a)$を求めよ.
(2)$g(a)$の最小値と,その時の$a$を求めよ.
星薬科大学 私立 星薬科大学 2014年 第6問
空間内の$2$点$(-1,\ 3,\ -2)$,$(-3,\ 2,\ -1)$を通る直線$\ell$がある.$x$軸上の点$\mathrm{P}$と$\ell$上の点$\mathrm{Q}$との距離が最小になるときの$\mathrm{P}$の座標は$(-[$55$],\ 0,\ 0)$,$\mathrm{Q}$の座標は$\displaystyle \left(-[$56$],\ \frac{[$57$]}{[$58$]},\ \frac{[$59$]}{[$60$]} \right)$であり,その距離の最小値は$\displaystyle \frac{\sqrt{[$61$]}}{[$62$]}$である.
北里大学 私立 北里大学 2014年 第2問
$m$を定数とする.$2$次関数$f(x)=x^2-2mx+m^2-4m$について,以下の問に答えよ.

(1)$m=3$のとき,$f(x)$の最小値を求めよ.
(2)$-1 \leqq x \leqq 1$において,$f(x)$の最大値が$2$,最小値が$-4m$となるような$m$の値を求めよ.
東京薬科大学 私立 東京薬科大学 2014年 第2問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)不等式
\[ 1+\frac{1}{\log_2 x}-\frac{3}{\log_3 x}<0 \]
を解くと,
\[ [タ]<x<\frac{[チツ]}{[テ]} \]
である.
(2)関数$f(x)=8^x+8^{-x}-5(4^x+4^{-x})+6(2^x+2^{-x})$がある.ただし,$x$は全ての実数を動く.

(i) $2^x+2^{-x}=t$とおくとき,$t$の取り得る値の範囲は$t \geqq [$*$ ト]$である.
(ii) $4^x+4^{-x}$,$8^x+8^{-x}$を$t$の式で表すと
\[ 4^x+4^{-x}=t^2+[$* ナ$],\quad 8^x+8^{-x}=t^3+[$* ニ$]t \]
である.
(iii) $f(x)$を$t$の式で表すと,$f(x)=t^3+[$*$ ス]t^2+[$*$ ネ]t+[$*$ ノハ]$である.
\mon[$\tokeishi$] $f(x)$の最小値は$[$*$ ヒ]$である.
東京薬科大学 私立 東京薬科大学 2014年 第5問
$k$を正の定数として,放物線$C:y=x^2$と直線$\ell_n:y=a_nx+ka_n-{a_n}^2$を考える.$C$と$\ell_n$の共有点の個数を$a_{n+1}$として数列$\{a_n\}$を定める.ただし,以下では常に$a_1=0$とする.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$k=1$のとき,$a_2=[と]$,$a_3=[な]$である.
(2)$k=1$のとき,$\displaystyle \sum_{n=1}^{100} a_n=[にぬ]$である.また,$C$と$\ell_n$の共有点の個数が$2$であるとき,両者で囲まれる部分の面積は$\displaystyle \frac{[ね]}{[の]}$である.
(3)数列$\{a_n\}$のとる値に$2$が一度も現れないとき,$\displaystyle k \leqq \frac{[は]}{[ひ]}$である.
(4)数列$\{a_n\}$のある番号$N$から先の項($N$も含める)がすべて$2$になるとき,そのようなことが可能になる$N$の最小値は$[ふ]$であり,そのとき$\displaystyle k>\frac{[へ]}{[ほ]}$である.
昭和薬科大学 私立 昭和薬科大学 2014年 第2問
関数$f(x)$は$x>0$において$f(x)>0$であり,$x$軸,$y$軸,$y=f(x)$,および$x=a (a>0)$で囲まれた部分の面積を$S(a)$とすると,$\displaystyle S(a)=\frac{1}{4}a^2+a$である.また,関数$g(x)$は$x>0$において$g(x)<0$であり,$x$軸,$y$軸,$y=g(x)$,および$x=a (a>0)$で囲まれた部分の面積を$T(a)$とすると,$\displaystyle T(a)=\frac{1}{3}a^3-a^2+2a$である.

(1)$y=f(x)$,$y=g(x)$,$x=1$,$x=2$で囲まれた部分の面積は$\displaystyle \frac{[ノ][ハ]}{[ヒ][フ]}$である.
(2)$f(1)-g(1)$の値は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
(3)$x>0$において,$f(x)-g(x)$の最小値は$\displaystyle \frac{[マ][ミ]}{[ム][メ]}$である.
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$x=3+\sqrt{5}$,$y=3-\sqrt{5}$のとき,$4x^2+3xy+4y^2=[ア]$,$\displaystyle \frac{y}{x}+\frac{x}{y}=[イ]$である.
(2)関数$f(x)=-x^2+8x+c (2 \leqq x \leqq 5)$の最小値が$1$のとき,$c=[ウ]$である.また,そのときの$f(x)$の最大値は$[エ]$である.
(3)放物線$C_1:y=(x-p)^2+q$が放物線$C_2:y=-x^2$に接するとき,$p,\ q$の満たす条件は$[オ]$である.これより,$p$がすべての実数値をとって変わるとき,$C_1$の頂点が描く軌跡は放物線であり,その方程式は$[カ]$である.
(4)放物線$C:y=x^2+x$と直線$\ell_1:y=-x$との$2$つの交点のうち,原点ではない交点の$x$座標を$x_0$とすると,$x_0=[キ]$である.$C$と$\ell_1$によって囲まれた部分の面積を$S_1$とし,$C$,$\ell_1$および直線$\ell_2:x=-4$によって囲まれた部分の面積を$S_2$とするとき,$S_1+S_2=[ク]$である.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)$を
\[ f(x)=\int_0^1 |(x-1)(x-t)| \, dt \]
とする.
$x \leqq [ア]$,$x \geqq [イ]$のとき,
\[ f(x)=[ウ]x^2+\frac{[エ]}{[オ]}x+\frac{[カ]}{[キ]} \]
$[ア]<x<[イ]$のとき,
\[ f(x)=[ク]x^3+[ケ]x^2+\frac{[コ]}{[サ]}x+\frac{[シ]}{[ス]} \]
である.また,関数$f(x)$は$x=[セ]$のとき,最小値$[ソ]$をとる.
(2)自然数$m,\ n$が
\[ \frac{1}{m}+\frac{1}{n}<\frac{1}{3} \]
を満たすとき,$\displaystyle \frac{1}{m}+\frac{1}{n}$の最大値は$\displaystyle \frac{[タ]}{[チ]}$である.
上智大学 私立 上智大学 2014年 第3問
$a \geqq 0$とし
\[ S(a)=\int_0^1 |x^2+2ax+a^2-1| \, dx \]
とおく.

(1)$\displaystyle a=\frac{1}{2}$のとき$\displaystyle S(a)=\frac{[ホ]}{[マ]}$である.
(2)等式
\[ S(a)=\int_0^1 (x^2+2ax+a^2-1) \, dx \]
が成り立つ$a$の範囲は$a \geqq [ミ]$である.
(3)$a \geqq [ミ]$のとき
\[ S(a)=[ム]a^2+[メ]a+\frac{[モ]}{[ヤ]} \]
であり,$0 \leqq a<[ミ]$のとき
\[ S(a)=\frac{[ユ]}{[ヨ]}a^3+[ラ]a^2+[リ]a+\frac{[ル]}{[レ]} \]
である.
(4)$S(a)$は$\displaystyle a=\frac{[ロ]+\sqrt{[ワ]}}{[ヲ]}$のとき最小値をとる.
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$39$]$~$[$60$]$にあてはまる数字を入れよ.ただし,空欄$[$41$]$,$[$44$]$,$[$47$]$,$[$51$]$には$+$または$-$の記号が入る.

(1)$\displaystyle \lim_{x \to 2} \frac{5x^2+5x-30}{x-2}=[$39$][$40$]$である.
(2)$2$次関数$y=f(x)$のグラフは原点と点$\displaystyle \left( 1,\ \frac{17}{4} \right)$を通る.また,$x=2$において傾き$8$の接線をもつ.このとき,$f(x)$の最小値は$\displaystyle [$41$] \frac{[$42$]}{[$43$]}$である.
(3)$2$次関数$f(x)=ax^2+bx+c$(ただし,$a,\ b,\ c$は定数)がある.すべての実数$x$について$3f(x)+4f^\prime(x)=-2x^2+5x+7$が常に成立するとき,
\[ a=[$44$] \frac{[$45$]}{[$46$]},\quad b=[$47$] \frac{[$48$][$49$]}{[$50$]},\quad c=[$51$] \frac{[$52$][$53$]}{[$54$][$55$]} \]
である.
(4)$2$つの関数$\displaystyle f(x)=x-\frac{3}{a}$および$\displaystyle g(x)=ax^2+7x+\frac{6}{a}$がある(ただし,$a$は正の定数).$xy$平面上の$4$つのグラフ$y=f(x)$,$y=g(x)$,$x=0$および$x=1$で囲まれる図形の面積は$a=[$56$] \sqrt{[$57$]}$のとき最小値$[$58$]+[$59$] \sqrt{[$60$]}$をとる.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。