タグ「最小値」の検索結果

44ページ目:全1222問中431問~440問を表示)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)座標平面上の$3$点$\mathrm{A}(4,\ 8)$,$\mathrm{O}(0,\ 0)$,$\mathrm{C}(12,\ 0)$を頂点とする三角形$\triangle \mathrm{AOC}$に接する正方形を,一辺が$\mathrm{OC}$上にあり,$2$頂点が三角形の他の辺上にあるようにとる.このとき正方形の一辺の長さは
\[ \frac{[$1$][$2$]}{[$3$][$4$]} \]
である.
(2)$u,\ v$を$0<u<2$,$0<v$なる実数とするとき
\[ (u-v)^2+\left( \sqrt{4-u^2}-\frac{18}{v} \right)^2 \]

\[ u=\sqrt{[$5$]},\quad v=[$6$] \sqrt{[$7$]} \]
のとき,最小値$[$8$][$9$]$をとる.(ヒント:平面上の$2$点の距離を考える.)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)$x,\ y,\ z$は実数で$xyz \neq 0$とする.もし
\[ 2^x=3^y=[$1$][$2$]^z \]
ならば
\[ \frac{3}{x}+\frac{2}{y}=\frac{1}{z} \]
である.
(2)関数$f(x)=x^2-2$に対して,$g(x)=f(f(x))$とおく.このとき,方程式$g(x)=x$の解は
\[ [$3$][$4$],\quad [$5$][$6$],\quad \frac{[$7$][$8$] \pm \sqrt{[$9$][$10$]}}{[$11$][$12$]} \]
である.ただし,最初の数は$2$番目の数より小とする.
(3)直線$y=-3x$上の点$\mathrm{P}$と,曲線$xy=2 (x>0)$上の点$\mathrm{Q}$の間の距離の最小値は
\[ \frac{[$13$] \sqrt{[$14$][$15$]}}{[$16$][$17$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$a,\ b,\ c$を実数とする.$x$の関数$F(x)$を
\[ F(x)=\frac{1}{3}x^3+ax^2+bx+c \]
と定め,
\[ f(x)=F^\prime(x) \]
とおく.関数$F(x)$は$x=\alpha$において極大に,$x=\beta$において極小になるとする.点$(\alpha,\ f(\alpha))$,$(\beta,\ f(\beta))$における曲線$y=f(x)$の接線をそれぞれ$\ell_\alpha$,$\ell_\beta$とする.

(1)直線$\ell_\alpha$と$\ell_\beta$の交点の座標は
\[ \left( \frac{[$15$]}{[$16$]} \alpha+\frac{[$17$]}{[$18$]} \beta,\ \frac{[$19$][$20$]}{[$21$]} (\beta-\alpha)^2 \right) \]
である.
(2)曲線$y=f(x)$と直線$\ell_\alpha$,$\ell_\beta$とで囲まれた図形の面積を$S$とすると,
\[ S=\frac{[$22$]}{[$23$][$24$]} (\beta-\alpha)^3 \]
である.必要なら次の公式を使ってよい.$r$を実数とすると
\[ \int (x+r)^2 \, dx=\frac{1}{3}(x+r)^3+C \quad (C \text{は定数}) \]
(3)実数$a,\ b$が不等式
\[ 0 \leqq a \leqq 2,\quad 2a-4 \leqq b \leqq 2a-2 \]
をみたす範囲を動くとき,$S$の最大値は$\displaystyle \frac{[$25$][$26$]}{[$27$]}$,最小値は$\displaystyle \frac{[$28$][$29$]}{[$30$]}$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
$a$を実数とする.$2$次関数
\[ f(x)=x^2-ax+1 \]
の区間$0 \leqq x \leqq 1$における最大値を$M(a)$,最小値を$m(a)$と表す.

(1)$2$つの関数$b=M(a)$と$b=m(a)$のグラフをかけ.
(2)$b$を実数とする.$2$次方程式
\[ x^2-ax+1-b=0 \]
が区間$0 \leqq x \leqq 1$において少なくとも$1$つの解を持つような点$(a,\ b)$全体の集合を,$(1)$を用いて斜線で図示せよ.
自治医科大学 私立 自治医科大学 2014年 第21問
関数$y=ax^4-4ax^3+b$($a,\ b$とも実数,$a>0$)の$1 \leqq x \leqq 4$における最大値が$3$,最小値が$-24$となるとき,$a+b$の値を求めよ.
自治医科大学 私立 自治医科大学 2014年 第22問
曲線$y=\sqrt{x-1}$上($x>1$)の点$\mathrm{A}$と点$\mathrm{B}(3,\ -1)$を結ぶ線分$\mathrm{AB}$の長さの最小値を$m$とする.$m^2$の値を求めよ.
北海道薬科大学 私立 北海道薬科大学 2014年 第1問
次の各設問に答えよ.

(1)$\displaystyle \frac{1715}{414}=[ア]+\frac{1}{[イ]+\displaystyle\frac{1}{[ウエ]}}$と表すことができる.

(2)$y=x^2+2x+5$を$x$軸方向に$p$,$y$軸方向に$q$だけ平行移動して得られる$2$次関数のグラフが点$(0,\ 16)$を通り,最小値が$7$となるとき,正の実数$p,\ q$の値は$p=[オ]$,$q=[カ]$である.
(3)不等式$\displaystyle -1<\log_4 x-\log_2 x<\frac{3}{2}$を満たす$x$の値の範囲は$\displaystyle \frac{[キ]}{[ク]}<x<[ケ]$である.
(4)$10$本のくじがあって,そのうち$3$本が当たりくじであるとする.引いたくじを元にもどさないでくじを引くとき,$7$本目までに当たりくじを引く確率は$\displaystyle \frac{[コサシ]}{[スセソ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第1問
放物線$y=-x^2+8x$と直線$y=2x+t (t \geqq 0)$と直線$x=0$,$x=6$とで囲まれた図形の面積を$S(t)$とする.このとき,次の問に答えなさい.

(1)$S(12)=[アイ]$である.
(2)$S(t)$が$3$つの部分の面積の和になるのは$[ウ]<t<[エ]$のときである.このとき$S(t)$は
\[ [オ](t-[カ])+\frac{[キ]}{[ク]}([ケ]-t) \sqrt{[ケ]-t} \]
である.
(3)以下$[ウ]<t<[エ]$で考える.$A=\sqrt{[ケ]-t}$とおく.$S(t)$を$A$で表すと
\[ S(t)=\frac{[コ]}{[サ]}A^3-[シ]A^2+[スセ] \]
となる.また$\displaystyle A=\frac{[ソ]}{[タ]}$のとき$S(t)$は最小値$\displaystyle \frac{[チツ]}{[テ]}$をとる.
東北工業大学 私立 東北工業大学 2014年 第1問
$x$の$2$次関数$y=x^2-4px+(4p+5)(p-1)$について考える.

(1)この関数のグラフの軸は直線$x=[ア][イ]p$である.
(2)$p=3$のとき,この関数は最小値$-[ウ][エ]$をとり,そのグラフと$y$軸との交点の$y$座標は$[オ][カ]$である.
(3)この関数のグラフが$x$軸の正の部分と異なる$2$点で交わるとき,$[キ][ク]<p<[ケ][コ]$である.
埼玉工業大学 私立 埼玉工業大学 2014年 第3問
曲線$\ell:y=\log x (1 \leqq x \leqq 2)$上の点$(t,\ \log t)$における$\ell$の接線の方程式は
\[ y=\frac{[ハ]}{t}x+\log t-[ヒ] \]
であり,この接線と直線$x=1$,$x=2$および$\ell$で囲まれた図形の面積$S$は,
\[ S=\frac{[フ]}{2t}+\log t-[ヘ] \log 2 \]
である.$\displaystyle t=\frac{[ホ]}{[マ]}$のとき,$S$は最小値$\displaystyle 1+\log \frac{[ミ]}{[ム]}$をとる.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。