タグ「最小値」の検索結果

42ページ目:全1222問中411問~420問を表示)
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第2問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2014年 第4問
次の問いに答えよ.

(1)$0 \leqq \theta \leqq 2\pi$とする.関数
\[ y=2 \sin 2\theta-2 \sqrt{2}(\sin \theta+\cos \theta)+2 \]
について,$t=\sin \theta+\cos \theta$とおいて,$y$を$t$の関数で表せ.また,$y$の最大値,最小値とそのときの$\theta$の値を求めよ.
(2)$3$つの不等式
\[ \log_y (x^2-3x+2) \leqq 1,\quad 0<x \leqq 3,\quad 0<y<1 \]
を同時にみたす領域を$xy$平面上に図示せよ.
秋田大学 国立 秋田大学 2014年 第3問
次の問いに答えよ.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.$\displaystyle \sin \theta=\frac{3}{4}$のとき,$\cos \theta$と$\tan \theta$の値を求めよ.また,$\sin 8\theta$の値を求めよ.
(2)$t=\cos \theta$とおく.関数$\displaystyle y=-\frac{8}{9} \sin^2 \frac{\theta}{2}-\frac{4}{9} \sin^2 \theta+\frac{1}{2}$を$t$の関数として表せ.
(3)$(2)$の関数$y$の$0 \leqq \theta<2\pi$における最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
山形大学 国立 山形大学 2014年 第3問
関数$f(x)$を$\displaystyle f(x)=\int_0^{\frac{\pi}{2}} |x-2t| \sin t \, dt$で定める($0 \leqq x \leqq \pi$).次の問に答えよ.

(1)次の不定積分を求めよ.ただし,$a>0$とする.
\[ \int t \sin at \, dt,\quad \int \sin^2 \frac{t}{2} \, dt \]
(2)$f(x)$の最小値を求め,そのときの$x$の値を求めよ.
(3)曲線$y=f(x)-f(0)$と$x$軸および直線$x=\pi$で囲まれた図形を$x$軸のまわりに回転して得られる回転体の体積$V$を求めよ.
山口大学 国立 山口大学 2014年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(1,\ 1)$がある.方程式$y=-ax+2a+2$が表す直線を$\ell$とするとき,次の問いに答えなさい.ただし,$a$は正の実数とする.

(1)直線$\ell$に関して点$\mathrm{A}$と対称な点を$\mathrm{A}^\prime$とする.$\mathrm{A}^\prime$の座標を求めなさい.
(2)点$\mathrm{P}$が直線$\ell$上を動くときの$\mathrm{OP}+\mathrm{PA}$の最小値を,$a$を用いて表しなさい.
(3)$(2)$で求めた$\mathrm{OP}+\mathrm{PA}$の最小値を$f(a)$とするとき,$f(a)$を最大にするような$a$の値を求めなさい.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
山形大学 国立 山形大学 2014年 第4問
関数
\[ f(x)=3^{3x-1}+3^{-3x-1}-3^{2x}-3^{-2x}-2 \cdot 3^x-2 \cdot 3^{-x}-2 \]
と$t=3^x+3^{-x}$について次の問に答えよ.

(1)$t$のとり得る値の範囲を求めよ.
(2)$3^{3x}+3^{-3x}$と$3^{2x}+3^{-2x}$を$t$の式で表し,$f(x)$を$t$の式で表せ.
(3)$f(x)$の最小値を求めよ.
(4)$a$を実数とするとき,$f(x)=a$をみたす$x$の個数を求めよ.
茨城大学 国立 茨城大学 2014年 第1問
区間$0<x<\pi$で関数$y=f(x)=\cos (\sqrt{2}x)$を考え,そのグラフを$C$とする.$C$上の点$\mathrm{P}(\theta,\ \cos (\sqrt{2} \theta))$における$C$の法線を$\ell$,$\ell$と$x$軸との交点を$\mathrm{Q}$,点$\mathrm{P}$と点$\mathrm{Q}$の距離を$g(\theta)$とする.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通りかつ$\mathrm{P}$での$C$の接線に直交する直線のことである.以下の各問に答えよ.

(1)$f(x)$の増減の様子を調べ,$C$の概形をかけ.さらに,$f(x)$の最小値を与える$x$の値,および$C$と$x$軸との交点の$x$座標を求めよ.
(2)$\ell$の方程式を求めよ.
(3)$\mathrm{Q}$の座標を求めよ.
(4)$\theta$が$0<\theta<\pi$の範囲を動くとき,$t=\cos^2 (\sqrt{2} \theta)$の動く範囲と$g(\theta)$の最大値を求めよ.
(5)$\theta$が$0<\theta<\pi$の範囲を動くとき,$g(\theta)$の最大値を与える$\theta$の値をすべて求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。