タグ「最小値」の検索結果

31ページ目:全1222問中301問~310問を表示)
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)整式$P(x)$は$(x-2)(x+3)$で割ると余りは$5x-2$であり,$(x-2)(x-3)$で割ると余りは$-x+10$である.このとき,$P(x)$を$(x+3)(x-3)$で割ると余りは$([ア])x+([イ])$である.
(2)初項が$a_1=-24$で公差が$12$の等差数列$\{a_n\}$の初項から第$n$項までの和$S_n$は$S_n=[ウ]$である.また,数列$\{b_n\}$の初項$b_1$から第$n$項までの和$T_n$が$T_n=5^n-1$のとき,一般項は$b_n=[エ]$である.このとき,初項が$c_1=-1$で漸化式
\[ c_{n+1}=c_n+S_n-b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定まる数列$\{c_n\}$の一般項は$c_n=[オ]$である.
(3)曲線$C:y=|x^2-4x-5|$と直線$\ell:y=k$の共有点の個数は$3$個である.このとき,実数$k$の値は$k=[カ]$であり,直線$\ell$と曲線$C$で囲まれた図形の面積は$[キ]$である.
(4)$1$個のサイコロを$3$回投げる.出た目の最大値が$5$となる確率は$[ク]$である.出た目の最大値が$5$,かつ最小値が$1$となる確率は$[ケ]$である.$3$つの出た目の積が$2$の倍数であり,かつ$3$の倍数でない確率は$[コ]$である.
同志社大学 私立 同志社大学 2015年 第2問
連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2 \leqq 2 \phantom{\frac{[ ]}{2}} \\
x-y \leqq \sqrt{2} \phantom{\frac{[ ]}{2}} \\
(1-\sqrt{2})(x+1) \leqq y+1 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$D$とする.このとき,次の問いに答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$内を動くとき,$k=x+\sqrt{3}y$がとる値の最大値とそのときの$x,\ y$の値を求めよ.また,$k$の最小値とそのときの$x,\ y$の値を求めよ.
(3)点$(x,\ y)$が領域$D$内を動くとき,$m=x^2+y^2+\sqrt{2}x-\sqrt{6}y$がとる値の最大値とそのときの$x,\ y$の値を求めよ.また,$m$の最小値とそのときの$x,\ y$の値を求めよ.
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
同志社大学 私立 同志社大学 2015年 第3問
$a$を,$a>1$を満たす定数とする.関数
\[ y=a^{3x}-3a^{2x+1}+3a^{x+2}+3a^{-x+2}-3a^{-2x+1}+a^{-3x} \]
を考える.$t=a^x+a^{-x}$とおくとき,次の問いに答えよ.

(1)$t$がとる値の範囲を求めよ.
(2)$a^{3x}+a^{-3x}$を$t$を用いて表せ.
(3)$y$を$a$と$t$を用いて表せ.
(4)$y$の最小値を$a$を用いて求めよ.
東北工業大学 私立 東北工業大学 2015年 第1問
$x$の$2$次関数$y=x^2-4kx-k^2+12k-2$について考える.

(1)この関数のグラフの軸は直線$x=[ア][イ]k$である.また,この関数の最小値は$-[ウ][エ]k^2+12k-2$である.
(2)この関数の定義域を$1 \leqq x \leqq 5$とし,$k=-1$とすると,この関数の値域は$-[オ][カ] \leqq y \leqq [キ][ク]$である.
(3)この関数の定義域を$x \leqq 2$とすると,この関数の最小値は$k=[ケ][コ]$のときに最大となる.
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)さいころを$n$回投げて,第$1$回から第$n$回までに出た目$n$個の積を$X_n$とする.$X_n$が$3$で割り切れる確率は$[ア]$であり,$X_n$が$2$で割り切れる確率は$[イ]$である.また,$X_n$が$6$で割り切れる確率を$p_n$とすると$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (1-p_n)=[ウ]$である.
(2)連立不等式
\[ x^2+4y^2 \leqq 4,\quad x+2y \geqq 2 \]
の表す領域を$D$とする.点$(x,\ y)$が$D$内を動くとき,$2x+y$の最小値は$[エ]$である.また,最大値は$[オ]$であり,そのときの$x,\ y$は$x=[カ]$,$y=[キ]$である.
(3)正整数$n=1,\ 2,\ 3,\ \cdots$に対し$\displaystyle \int_0^\pi \sin^2 nx \, dx=[ク]$であり,異なる正整数$m,\ n$に対しては$\displaystyle \int_0^\pi \sin mx \sin nx \, dx=[ケ]$である.したがって,$\displaystyle f(x)=\sum_{n=1}^{15} n \sin nx$とすると$\displaystyle \int_0^\pi \{f(x)\}^2 \, dx=[コ]$である.
大阪薬科大学 私立 大阪薬科大学 2015年 第2問
次の問いに答えなさい.

$a,\ b$を正の実数の定数とし,$2$次関数$f(x)=3x^2+ax+b$を考える.$xy$座標平面上の放物線$y=f(x)$を$C$とし,$C$上の点$(1,\ f(1))$における接線を$\ell$とする.また,$\ell$を$y$軸方向に$3$だけ平行移動した直線を$m$とする.
(1)$C$の頂点の$y$座標を$q$とするとき,$q$は,$a$と$b$を用いて表すと$q=[$\mathrm{E]$}$である.
(2)$C$と$m$で囲まれる部分の面積$S$の値は$S=[$\mathrm{F]$}$である.
(3)$\ell$と$x$軸の交点の$x$座標を$r$とする.このとき,$r$は,$a$と$b$を用いて表すと$r=[$\mathrm{G]$}$である.また,大小$2$個のさいころを投げ,大きいさいころの出た目の数を$a$の値,小さいさいころの出た目の数を$b$の値とするとき,$\displaystyle 0 \leqq r \leqq \frac{1}{6}$である確率$P$の値は$P=[$\mathrm{H]$}$である.ただし,大小$2$個のさいころはそれぞれ$1$から$6$までの目が同様に確からしく出るとする.
(4)$C$と$x$軸の共有点が$2$個であるとき,その共有点の$x$座標をそれぞれ$\alpha,\ \beta$とする($\alpha<\beta$).$C$と$x$軸の共有点が$2$個であり,かつ$a,\ b$それぞれが$1 \leqq a \leqq 6$,$1 \leqq b \leqq 6$を満たす整数であるとき,$\alpha^2+\beta^2$のとり得る値の最大値と最小値を$[い]$で求めなさい.
北海道薬科大学 私立 北海道薬科大学 2015年 第2問
次の各設問に答えよ.

(1)数列$10,\ 22,\ 41,\ 74,\ \cdots$は,初項が$[ア]$,公差が$[イ]$の等差数列と,初項が$[ウ]$,公比が$[エ]$の等比数列の和で表すことができる.
(2)$a,\ b$を正の実数として,$xy$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(a,\ 8)$,$\mathrm{Q}(b,\ 0)$をとる.$\angle \mathrm{OPQ}={90}^\circ$の三角形$\mathrm{OPQ}$の面積は,$a=[オ]$,$b=[カキ]$のとき,最小値$[クケ]$をとる.
東京女子大学 私立 東京女子大学 2015年 第1問
$0 \leqq \theta<2\pi$のとき,関数$\displaystyle y=4 \cos^2 \frac{\theta}{2}-\cos 2\theta+1$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
東京女子大学 私立 東京女子大学 2015年 第4問
空間のベクトル$\overrightarrow{n}=(1,\ -1,\ 1)$,$\overrightarrow{a}=(\sqrt{2},\ -2 \sqrt{2},\ 0)$に対し,以下の設問に答えよ.

(1)$\overrightarrow{n} \cdot \overrightarrow{b}=0$,$\overrightarrow{a} \cdot \overrightarrow{b}=0$,$|\overrightarrow{b}|=1$をみたすベクトル$\overrightarrow{b}$を$1$つ求めよ.
(2)$(1)$で求めた$\overrightarrow{b}$に対し,$\overrightarrow{n} \cdot \overrightarrow{c}=0$,$\overrightarrow{b} \cdot \overrightarrow{c}=0$,$|\overrightarrow{c}|=1$をみたすベクトル$\overrightarrow{c}$を$1$つ求めよ.
(3)$s,\ t$を実数とし,$(1)$と$(2)$で求めた$\overrightarrow{b}$と$\overrightarrow{c}$を用いて$\overrightarrow{p}=s \overrightarrow{b}+t \overrightarrow{c}$とおく.$|\overrightarrow{p}|=1$であるとき,$|\overrightarrow{p}-\overrightarrow{a}|$の最小値を求めよ.また,そのときの$\overrightarrow{p}$を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。