タグ「最小値」の検索結果

118ページ目:全1222問中1171問~1180問を表示)
甲南大学 私立 甲南大学 2010年 第3問
$x>0$の範囲で定義された関数$f(x)=x \log x$,$g(x)=x^x$について,以下の問いに答えよ.ただし,対数は$e$を底とする自然対数である.

(1)$f(x)$の導関数を求めよ.
(2)$g(x)$の導関数を求めよ.
(3)$\displaystyle \frac{1}{3} \leqq x \leqq \frac{1}{2}$の範囲における$g(x)$の最大値と最小値を求めよ.また,そのときの$x$の値を求めよ.
甲南大学 私立 甲南大学 2010年 第1問
以下の空欄にあてはまる数を入れよ.

(1)$2$次方程式$x^2-2x+3=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^2-\alpha\beta+\beta^2=[1]$,$\displaystyle \frac{\beta^2}{\alpha}+\frac{\alpha^2}{\beta}=[2]$である.
(2)$\triangle \mathrm{ABC}$において,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺をそれぞれ$a,\ b,\ c$とする.$a=3$,$b=4$,$\angle \mathrm{C}=30^\circ$のとき,$\triangle \mathrm{ABC}$の面積は$[3]$である.また,$a=3$,$b=4$,$\angle \mathrm{A}=30^\circ$のとき,$\angle \mathrm{C}>90^\circ$ならば,$c=[4]$である.
(3)不等式$\log_2 (\log_2 (\log_2 x)) \leqq 1$をみたす$x$の値の範囲は,$[5]<x \leqq [6]$である.
(4)関数$y=(x^2+4x+5)(x^2+4x+2)+2x^2+8x+1$は,$x=[7]$のとき最小値$[8]$をとる.
(5)つぼの中に赤玉$5$個,白玉$5$個,青玉$2$個がある.玉を一度に$4$個取り出すとき,その$4$個の玉が$1$種類の色の玉からなる確率は$[9]$であり,$3$種類の色の玉からなる確率は$[10]$である.
龍谷大学 私立 龍谷大学 2010年 第2問
大きさ$\sqrt{3}$のベクトル$\overrightarrow{a}$と大きさ$2$のベクトル$\overrightarrow{b}$を考える.$\overrightarrow{a}$と$\overrightarrow{b}$のなす角$\theta$が$\displaystyle \cos \theta=\frac{1}{4}$を満たすとき,次の問いに答えなさい.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$の内積を求めなさい.
(2)$\overrightarrow{p}=(\cos t) \overrightarrow{a}+(\sin t) \overrightarrow{b}$,$\overrightarrow{q}=(-\sin t) \overrightarrow{a}+(\cos t) \overrightarrow{b}$とするとき,${|\overrightarrow{q|-\overrightarrow{p}}}^2$を$t$で表しなさい.
(3)$0 \leqq t \leqq \pi$の範囲で(2)の${|\overrightarrow{q|-\overrightarrow{p}}}^2$の最大値と最小値を求めなさい.
南山大学 私立 南山大学 2010年 第2問
$a$を正の実数とする.放物線$C:y=ax^2$上の点$\mathrm{P}(1,\ a)$における$C$の接線と$\mathrm{P}$で垂直に交わる直線を$\ell$とする.$x \geqq 0$の領域で,$y$軸,$C$および$\ell$で囲まれた部分の面積を$S_1$とし,$x$軸,$C$および$\ell$で囲まれた部分の面積を$S_2$とする.

(1)$\ell$の方程式を求めよ.
(2)$S_1$を$a$で表せ.
(3)$S_1$が最小値をとるとき,$S_2$の値を求めよ.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)分数式$\displaystyle \frac{x^3+2x^2+4x-7}{x^2+2x-3}$を約分して既約分数にすると$[ア]$である.また,等式$ax(x-1)+b(x-1)(x-2)+c(x-3)=3x^2+2x+1$が$x$についての恒等式となるように$a,\ b,\ c$の値を定めると,$(a,\ b,\ c)=[イ]$である.
(2)$3^{30}$の桁数を求めると$[ウ]$である.また,$\displaystyle \left( \frac{1}{9} \right)^{40}$を小数で表すと小数第$n$位に初めて$0$でない数が現れ,$n=[エ]$である.ただし,$\log_{10}3=0.4771$とする.
(3)$2$次関数$f(x)=ax^2+bx+c$は$x=1$で最小値$-1$をとる.$f(x)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^4+\beta^4$を$a$で表すと$\alpha^4+\beta^4=[オ]$である.また,$\alpha^4+\beta^4>6$を満たす$a$の値の範囲を求めると$[カ]$である.
(4)$a \geqq 0$とする.$2$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(a,\ 3)$からの距離の比が$2:1$である点$\mathrm{P}$の描く図形の方程式は$[キ]$である.また,この図形が直線$y=x+2$と$2$つの共有点$\mathrm{C}$,$\mathrm{D}$をもち,線分$\mathrm{CD}$の長さが$2 \sqrt{2}$であるとき,$a$の値を求めると$a=[ク]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \frac{\sqrt{7}+1}{\sqrt{7}-2}$の整数部分を$a$,小数部分を$b$とするとき,$(a,\ b)=[ア]$であり,$\displaystyle \frac{1}{a}+\frac{1}{b}$の小数部分の値は$[イ]$である.
(2)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=10$,$\mathrm{BC}=12$,$\mathrm{CA}=8$とし,$\angle \mathrm{A}$の二等分線と$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}=[ウ]$である.また,$\mathrm{AD}$を軸とし,$\mathrm{AC}$を$\mathrm{AB}$に重ねるように$\triangle \mathrm{ADC}$を折り返すとき,$\mathrm{C}$が$\mathrm{AB}$上に重なる点を$\mathrm{E}$とする.このとき,$\sin \angle \mathrm{BDE}=[エ]$である.
(3)$x>0,\ y>0$とする.$\displaystyle \left( x+\frac{5}{y} \right) \left( y+\frac{2}{x} \right)$は,$xy=[オ]$のとき最小値$[カ]$をとる.
(4)展開図が半径$r$の円と周の長さが$k$の扇形からなる円錐を考える.このとき円錐の高さは$[キ]$である.また,$k$を一定とすると,$r=[ク]$のとき円錐の表面積が最大になる.ただし,円周率を$\pi$とする.
(5)実数$x,\ y,\ z (xyz \neq 0)$について等式$3^x=2^y=\sqrt{6^{3z}}$が成立しているとき,$x$を$z$で表すと$[ケ]$であり,$\displaystyle \frac{1}{x}+\frac{1}{y}$を対数を用いないで表すと$[コ]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
学習院大学 私立 学習院大学 2010年 第3問
実数$x,\ y$が$x^2+y^2=2x$を満たしながら動くとき,$3x+4y$の最大値と最小値を求めよ.
学習院大学 私立 学習院大学 2010年 第4問
$a$を正の実数とする.$y$軸上に点$\mathrm{P}(0,\ a)$があり,点$\mathrm{Q}$は放物線$C:y=x^2$上を動く.

(1)$\mathrm{P}$と$\mathrm{Q}$の距離の最小値を$a$で表せ.また,その最小値を与える点$\mathrm{Q}$の座標を求めよ.
(2)$a=5$の時,$\mathrm{P}$と$\mathrm{Q}$の距離を最小にする点$\mathrm{Q}$は$2$つある.これらの点を$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の接線をそれぞれ$\ell_1$,$\ell_2$とし,その交点を$\mathrm{R}$とする.$\ell_1$,$\ell_2$の方程式と$\mathrm{R}$の座標を求めよ.
学習院大学 私立 学習院大学 2010年 第4問
次の問いに答えよ.

(1)$a$を正の実数とする.定積分
\[ F(a)=\int_0^1 \frac{ax^2+(a^2+2a)x+2a^2-2a+4}{(x+a)(x+2)} \, dx \]
を求めよ.
(2)$a$が正の実数全体を動くとき,$F(a)$の最小値と,最小値を与える$a$の値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。