タグ「最小値」の検索結果

115ページ目:全1222問中1141問~1150問を表示)
山梨大学 国立 山梨大学 2010年 第3問
$2$つの関数$f(x)=x^3-6x^2+9x,\ g(x)=x^3-3x^2+3x-1$について,次の問いに答えよ.

(1)関数$f(x)$および$g(x)$の増減を調べ,曲線$y=f(x)$および$y=g(x)$を図示せよ.
(2)$2$つの曲線$y=f(x),\ y=g(x)$で囲まれた図形の面積を求めよ.
(3)(2)で面積を求めた図形と直線$y=4x+k$が共有点を持つとき,$k$の最小値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第4問
次に答えよ.ただし,対数は自然対数とする.必要ならば,$1.09<\log 3<1.10$を用いてよい.

(1)すべての$x>0$に対して,不等式
\[ x-\frac{x^2}{2} < \log (1+x) \]
が成り立つことを示せ.
(2)関数$\displaystyle f(x)=x-\frac{x^2}{3}-\log (1+x)$の$0 \leqq x \leqq 2$における最大値,および最小値を求めよ.
(3)方程式$\displaystyle x-\frac{x^2}{3}=\log (1+x)$は$0<x<2$の範囲に解を1つだけもつことを示せ.
(4)(3)における解を$\alpha \ (0<\alpha<2)$とする.曲線$\displaystyle y=x-\frac{x^2}{3}$と曲線$y=\log (1+x)$で囲まれた図形($0 \leqq x \leqq \alpha$の部分)の面積を$S$とする.また,曲線$\displaystyle y=x-\frac{x^2}{3}$,$y=\log (1+x)$と直線$x=2$で囲まれた図形($\alpha \leqq x \leqq 2$の部分)の面積を$T$とする.$S$と$T$の大小を比較せよ.
琉球大学 国立 琉球大学 2010年 第1問
次の問いに答えよ.

(1)$t$を実数とする.放物線$y=x(2-x)$上の点$(t,\ t(2-t))$における接線の方程式を求めよ.
(2)(1)で求めた直線と放物線$y=x(2-x)$および2直線$x=0,\ x=3$とで囲まれた図形の面積を$S(t)$とする.$0 \leqq t \leqq 2$における$S(t)$の最大値,最小値とそのときの$t$の値を求めよ.
防衛大学校 国立 防衛大学校 2010年 第1問
実数$x,\ y$について,関係式$x^2+xy+y^2 = 3$が成り立つとする.このとき,次の問に答えよ.

(1)$x+y=s,\ xy = t$とおくとき,$t$を$s$の式で表せ.
(2)$s$のとり得る値の範囲を求めよ.
(3)$x^2+y^2+x+y=k$とおくとき,$k$を$s$の式で表せ.
(4)$k$のとり得る値の最大値$M$と最小値$m$を求めよ.
防衛大学校 国立 防衛大学校 2010年 第2問
関数$f(x)=3 \sin x+4 \cos x$について,次の問に答えよ.ただし,$0 \leqq x \leqq \pi$とする.

(1)$f(x)=r \sin (x+\alpha)$と変形したとき,$r$の値と$\cos \alpha,\ \sin \alpha$の値を求めよ.ただし,$r>0,\ -\pi<\alpha \leqq \pi$とする.
(2)$f(x)$の最大値$M$と最小値$m$を求めよ.
(3)(1)の$r$と$\alpha$に対し,$\displaystyle f(x) \geqq \frac{r}{2}$となる$x$の範囲を$\alpha$を用いて表せ.
防衛大学校 国立 防衛大学校 2010年 第3問
関数$f(x)=x^3-3x^2+3ax+b \ (a,\ b \text{は定数})$について,次の問に答えよ.

(1)$f(x)$が極値を持つような$a$の値の範囲を求めよ.
(2)$f(x)$の極大値と極小値の差が32となるとき,$a$の値を求めよ.
(3)(2)で求めた$a$の値に対し,$f(x)$の区間$-4 \leqq x \leqq 4$における最大値が5であるとする.このとき,$b$の値とこの区間での$f(x)$の最小値$m$を求めよ.
東京農工大学 国立 東京農工大学 2010年 第3問
座標平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2 \cos t,\quad y=\sqrt{3} \sin t \]
で与えられているとする.このとき,次の問いに答えよ.

(1)時刻$t$における点Pの速度$\overrightarrow{v}$と速さ$|\overrightarrow{v}|$を求めよ.
(2)$\displaystyle f(t)=-2\cos t+\frac{d}{dt}|\overrightarrow{v}|^2$とおく.$0 \leqq t \leqq 2\pi$における$f(t)$の最大値,最小値を求め,そのときの$t$の値を求めよ.
(3)(2)の関数$f(t)$について定積分$\displaystyle I=\int_0^{\frac{\pi}{2}} \frac{f(t)}{|\overrightarrow{v}|^2} \, dt$を求めよ.
小樽商科大学 国立 小樽商科大学 2010年 第3問
次の[ ]の中を適当に補いなさい.

(1)$4 \cos 15^\circ(1-\sin^2 15^\circ-\sin 15^\circ)-3(\sin 15^\circ+1) \cos 15^\circ=[ ]$.
(2)100人の学生を対象に100点満点の試験を行った結果,平均点が75点,最高点が95点,最低点が25点であった.平均点以上の学生数を$M$とし,$M$の最小値を求めると[ ].ただし,点数は全て自然数とする.
(3)関数$y=x^3-3x$のグラフに,直線$y=-1$上のある点から傾きがそれぞれ$k,\ -k \ (k>0)$の2本の接線が引けるとき,その2本の接線の接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.このとき,$A=\alpha^2+\beta^2,\ B=\alpha^3+\beta^3$の値を計算すると$(A,\ B)=[ ]$.
帯広畜産大学 国立 帯広畜産大学 2010年 第2問
関数$f(t)=\sin^2 t+2x \cos t$の$t$に関する最大値$M(x)$を$x$の関数とする.

(1)$-1<x<1$のとき,$M(x)$を$x$を用いて表し,曲線$y=M(x)$の概形を描きなさい.
(2)曲線$y=G(x)=3x^2$と$y=M(x)$で囲まれる図形の面積を求めなさい.
(3)直線$y=x-2$上の点$\mathrm{Q}$から,曲線$y=G(x)$に引いた$2$本の接線$L_1,\ L_2$の接点の$x$座標をそれぞれ$a,\ b$とする.点$\mathrm{Q}$の座標を$a,\ b$を用いて表しなさい.
(4)$2$本の接線$L_1,\ L_2$と曲線$y=G(x)$で囲まれる図形の面積の最小値を求めなさい.
滋賀大学 国立 滋賀大学 2010年 第3問
数の集まり$\{1\},\ \{1,\ 2\},\ \{1,\ 2,\ 3\},\ \{1,\ 2,\ 3,\ 4\},\ \cdots$について,次のように並べてできる数列
\[ 1,\ 1,\ 2,\ 1,\ 2,\ 3,\ 1,\ 2,\ 3,\ 4,\ \cdots \]
の第$n$項を$a_n$とする.このとき,次の問いに答えよ.

(1)$100$以下の自然数$k$について,$a_k-a_{k+1} \geqq 9$となる$k$の最小値と最大値を求めよ.
(2)$a_{225}$を求めよ.
(3)$\displaystyle \sum_{k=1}^{225}a_k$を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。