タグ「最小値」の検索結果

105ページ目:全1222問中1041問~1050問を表示)
立教大学 私立 立教大学 2011年 第2問
三角形$\mathrm{ABC}$において,各辺の長さをそれぞれ$\mathrm{AB}=x$,$\mathrm{AC}=y$,$\mathrm{BC}=z$とおき,$\angle \mathrm{BAC}=\theta$とおく.また,$x,\ y,\ z$は
\[ x+y+z=a,\quad xy=z \]
をみたすものとする.ただし,$a$は正の実数である.このとき,次の問に答えよ.

(1)$\cos \theta$を$a$と$z$の式で表せ.
(2)$x+y$と$xy$をそれぞれ$a$と$\cos \theta$の式で表せ.
(3)$\displaystyle \theta=\frac{\pi}{3}$のとき,$a$のとり得る値の最小値を求めよ.また,そのときの$x,\ y,\ z$を求めよ.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
立教大学 私立 立教大学 2011年 第1問
次の空欄アに$①$~$④$のいずれかを記入せよ.また空欄イ~スに当てはまる数または式を記入せよ.

(1)実数$x,\ y$に対して,$x^2+y^2 \leqq 1$は「$-1 \leqq x \leqq 1$かつ$-1 \leqq y \leqq 1$」であるための何条件かを,$①$「必要条件」,$②$「十分条件」,$③$「必要十分条件」,$④$「必要条件でも十分条件でもない」のうちから選択すると,$[ア]$となる.
(2)$3x^2-xy-2y^2-x+6y+k$が,$x,\ y$の整数係数の$1$次式の積に因数分解されるとき,$k=[イ]$である.
(3)$3$つの数$\log_2 x$,$\log_2 10$,$\log_2 20$がこの順で等差数列であるとき,$x=[ウ]$である.
(4)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots +\frac{1}{100 \cdot 101}=\frac{[エ]}{[オ]}$である.
(5)座標平面上の曲線$y=x^3+ax^2+bx$上の点$(2,\ 4)$における接線が$x$軸に平行であるとき,$a=[カ]$,$b=[キ]$である.
(6)自宅から$2000 \; \mathrm{m}$離れている駅まで,はじめに毎分$80 \; \mathrm{m}$で歩き,途中から毎分$170 \; \mathrm{m}$で走るものとする.出発してから$16$分以内に駅に到着するには,歩きはじめてから$[ク]$分以内に走り出さなければならない.
(7)点$\mathrm{A}(2,\ 3)$,点$\mathrm{B}(p,\ q)$と原点$\mathrm{O}$がつくる三角形$\mathrm{OAB}$について,$\angle \mathrm{OAB}=90^\circ$のとき,$p,\ q$の満たす条件は$p \neq 2$かつ$p=[ケ]$である.
(8)実数$x,\ y,\ a,\ b$が条件$x^2+y^2=2$,および$a^2+b^2=3$を満たすとき,$ax+by$の最大値は$[コ]$で,最小値は$[サ]$である.
(9)$\displaystyle x=\frac{\sqrt{6}-\sqrt{10}i}{3}$とし,$x$と共役な複素数を$y$とするとき,$x^3+y^3=[シ]$となる.ただし,$i$は虚数単位とする.
\mon $\displaystyle \sin x+\sin y=\frac{1}{3}$,$\displaystyle \cos x-\cos y=\frac{1}{2}$のとき,$\cos (x+y)$の値は$[ス]$である.
立教大学 私立 立教大学 2011年 第3問
座標平面上の点$\mathrm{A}(1,\ 1)$を中心とする円$(x-1)^2+(y-1)^2=1$上を,点$\mathrm{P}_0(2,\ 1)$から出発して一定の速度で反時計回りに動く点$\mathrm{P}$と,座標平面上の点$\mathrm{B}(-1,\ -1)$を中心とするもう$1$つの円$(x+1)^2+(y+1)^2=1$上を,点$\mathrm{Q}_0(-1,\ 0)$から出発して反時計回りに動く点$\mathrm{Q}$について考える.点$\mathrm{P}$と点$\mathrm{Q}$が各円周上を進む速度は等しいものとする.このとき,次の問に答えよ.

(1)図に示すように$\angle \mathrm{P}_0 \mathrm{AP}$ならびに$\angle \mathrm{Q}_0 \mathrm{BQ}$を$\theta$とするとき,点$\mathrm{P}$と点$\mathrm{Q}$それぞれの座標を$\theta$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_1$と点$\mathrm{Q}$の位置$\mathrm{Q}_1$それぞれの座標を求めよ.また,線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_2$と点$\mathrm{Q}$の位置$\mathrm{Q}_2$それぞれの座標を求めよ.
(3)$(2)$で求めた$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$について,$4$点$\mathrm{P}_1$,$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{P}_2$がつくる四角形の面積を求めよ.
(図は省略)
上智大学 私立 上智大学 2011年 第3問
座標平面において,動点$\mathrm{P}$の座標$(x,\ y)$が時刻$t$の関数として
\[ x=t^{\frac{1}{4}} (1-t)^{\frac{3}{4}},\quad y=t^{\frac{3}{4}} (1-t)^{\frac{1}{4}} \quad (0 \leqq t \leqq 1) \]
で与えられている.

(1)動点$\mathrm{P}$の$x$座標が最大になるのは$\displaystyle t=\frac{[ナ]}{[ニ]}$のときであり,$y$座標が最大になるのは$\displaystyle t=\frac{[ヌ]}{[ネ]}$のときである.
(2)$0<t<1$のとき,動点$\mathrm{P}$の速さの最小値は$\displaystyle \frac{\sqrt{[ノ]}}{[ハ]}$である.
(3)動点$\mathrm{P}$が直線$y=x$上に来るのは$t=0$のとき,$\displaystyle t=\frac{[ヒ]}{[フ]}$のとき,$t=1$のときの$3$回である.
(4)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,動点$\mathrm{P}$の描く曲線を$L$とする.$L$で囲まれる図形の面積は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$x>1$とする.
\[ \sqrt{\log_2 x}>\log_2 \sqrt{x} \]
を満たす$x$の値の範囲は$[ア]<x<[イ]$である.
(2)$x$の関数
\[ y=\sqrt{2} (\sin x-\cos x)-\sin x \cos x+1 \quad \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を考える.

(i) $t=\sin x-\cos x$とおくと,
\[ y=\frac{[ウ]}{[エ]}t^2+\sqrt{[オ]}t+\frac{[カ]}{[キ]} \]
が成り立つ.
(ii) $\displaystyle x=\frac{[ク]}{[ケ]} \pi$で$y$は最大値$[コ]+\sqrt{[サ]}$をとり,$\displaystyle x=\frac{[シ]}{[ス]} \pi$で$y$は最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
日本女子大学 私立 日本女子大学 2011年 第1問
$a$を$1$より大きい定数とする.関数
\[ f(x)=(\log_2x)^2-\log_2x^4+1 \quad (1 \leqq x \leqq a) \]
の最小値を求めよ.
日本女子大学 私立 日本女子大学 2011年 第3問
$1 \leqq x \leqq 3$のとき,関数$\displaystyle f(x)=\int_{x-1}^{x+1} |12-3t^2| \, dt$の最小値を求めよ.また,そのときの$x$の値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。