タグ「最小値」の検索結果

101ページ目:全1222問中1001問~1010問を表示)
九州工業大学 国立 九州工業大学 2011年 第2問
実数$\theta$に対して,行列$A$を$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とする.また,$n$を自然数とし,$A$の$n$乗を$A^n$で表す.次に答えよ.

(1)数学的帰納法により,すべての自然数$n$に対して
\[ A^n=\left( \begin{array}{cc}
\cos n\theta & -\sin n\theta \\
\sin n\theta & \cos n\theta
\end{array} \right) \]
が成立することを示せ.
(2)$\displaystyle \theta=\frac{\pi}{12}$とする.ある自然数$n$に対しては,行列$A^n$によって曲線$\displaystyle y=-\frac{1}{2x}$上の点が常に曲線$x^2-y^2=-1$上の点に移される.このような自然数$n$の最小値を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第1問
$2$次曲線$C$が媒介変数$\theta$を用いて,
\[ x=3+5 \cos \theta,\quad y=2+3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
と表されている.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を$x,\ y$を用いて表せ.また,$C$を座標平面上に図示せよ.
(2)曲線$C$上の点$\mathrm{P}(3+5 \cos \theta,\ 2+3 \sin \theta)$における$C$の接線$\ell$の方程式は,
\[ \frac{\cos \theta}{5}(x-3)+\frac{\sin \theta}{3}(y-2)=1 \]
となることを示せ.
(3)曲線$C$の焦点を$\mathrm{F}_1$,$\mathrm{F}_2$とする.$i=1,\ 2$に対し,$\mathrm{F}_i$を通り,接線$\ell$に垂直な直線$m_i$の方程式を求めよ.
(4)$i=1,\ 2$に対し,直線$m_i$と$\ell$との交点を$\mathrm{Q}_i$とする.点$\mathrm{O}^\prime(3,\ 2)$とするとき,線分$\mathrm{O}^\prime \mathrm{Q}_i$の長さを求めよ.
(5)$\mathrm{P}$が曲線$C$を一周するとき,線分$\mathrm{Q}_1 \mathrm{Q}_2$の長さの最大値,最小値,およびそのときの点$\mathrm{P}$をそれぞれ求めよ.
防衛大学校 国立 防衛大学校 2011年 第1問
関数$f(x)=4^x-2^{x+3}-2^{-x+3}+4^{-x} (x \geqq 0)$について,次の問に答えよ.

(1)$2^x+2^{-x}=t$とおくとき,$f(x)$を$t$の式で表せ.
(2)$t$のとり得る値の範囲を求めよ.
(3)$f(x)$の最小値$m$とそのときの$x$の値を求めよ.
大分大学 国立 大分大学 2011年 第2問
直線$\ell_1:y=mx+3 (m>0)$が,点$\mathrm{A}(5,\ 3)$を中心とする円$C_1$に接している.その接点を$\mathrm{P}$とする.直線$\ell_1$と$y$軸との交点を$\mathrm{Q}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線$\ell_2$と$x$軸との交点を$\mathrm{R}$とする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる$2$点で交わるような$m$の値の範囲を求めなさい.
(3)線分$\mathrm{QR}$の中点$\mathrm{S}$の座標を求めなさい.
(4)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
大分大学 国立 大分大学 2011年 第3問
実数の定数(パラメータ)$k$に対して,放物線$y=x^2$と直線$y=x+k$,$x=-1$,$x=2$で囲まれた図形の面積の最小値と,そのときの定数$k$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
$f(x)=\displaystyle\frac{\log x}{x}$とする.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形を次の点に注意して描け:$f(x)$の増減,グラフの凹凸,$x$→$+0$,$x$→$\infty$のときの$f(x)$の挙動.
(2)$n$を自然数とする.$k=1,\ 2,\ \cdots,\ n$に対して$x$が$\displaystyle e^{\frac{k-1}{n}} \leqq x \leqq e^{\frac{k}{n}}$を動くときの$f(x)$の最大値を$M_k$,最小値を$m_k$とし,
\[ A_n = \sum_{k=1}^n M_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
\[ B_n = \sum_{k=1}^n m_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
とおく.$A_n,\ B_n$を求めよ.
(3)$\displaystyle\lim_{n \to \infty} A_n$および$\displaystyle\lim_{n \to \infty} B_n$求めよ.
(4)各$n$に対して$\displaystyle B_n < \int_1^e f(x)\, dx < A_n$であることを示せ.
早稲田大学 私立 早稲田大学 2011年 第4問
点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$を頂点とする三角形$\mathrm{OAB}$がある.三角形$\mathrm{OAB}$の面積を$2$等分する線分の長さの最大値と最小値を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
不等式
\[ |y| - |x(x-1)| \leqq 0 \]
の表す領域を$S$とする.

(1)$S$において,不等式
\[ -\frac{9}{10} \leqq x \leqq \frac{11}{10} \]
を満たす点$(x,\ y)$の領域を$T$とする.$T$に含まれる点$(x,\ y)$に対し,$y$の最大値は[テ]である.
(2)$S$において,不等式
\[ -\frac{1}{20} \leqq x \leqq \frac{11}{10} \]
を満たす点$(x,\ y)$の領域を$U$とする.領域$U$における関数$x+9y$の最大値は[ト]で,最小値は[ナ]である.
早稲田大学 私立 早稲田大学 2011年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)関数
\[ f(x) = \int_0^1 |t^2-x^2| \, dt \]
の最小値は$[ア]$である.
(2)$n$を正の整数とする.$10^n$の正の約数すべての積は$[イ]$である.
(3)$\log_3n$が無理数となる$2011$以下の正の整数$n$は,全部で$[ウ]$個ある.
(4)関数$f(x)$は,次の$2$つの条件を満たしている.

(5)すべての実数$x$に対して,$f(3+x)=f(3-x)$
(6)$x$の値が,異なる$5$つの実数$a_1,\ a_2,\ a_3,\ a_4,\ a_5$のときに限り$f(x)=0$となる.

このとき$a_1+a_2+a_3+a_4+a_5=[エ]$である.
早稲田大学 私立 早稲田大学 2011年 第2問
原点をOとする座標空間において,2点A(3,\ 3,\ 4),\ B(1,\ 0,\ 0)がある.\\
次の条件を満たす点Pの集合を$C$とする.
\[ |\overrightarrow{\mathrm{AP}}| = 1, \quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{AP}} = 0 \]
また,次の条件を満たす点Qの集合を$S$とする.
\[ |\overrightarrow{\text{OQ}}| = 1 \]
次の設問に答えよ.

(1)点Qを$S$上の点とするとき,$|\overrightarrow{\text{AQ}}|$の最大値と最小値を求めよ.
(2)点Pを$C$上の点とし,点Qを$S$上の点とするとき,$|\overrightarrow{\text{PQ}}|$の最大値と最小値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。