タグ「最大」の検索結果

41ページ目:全460問中401問~410問を表示)
名古屋市立大学 公立 名古屋市立大学 2011年 第1問
座標平面上の点$(1,\ 0)$に物体$\mathrm{A}$がある.さいころを振り,$1$から$4$の目が出たら原点から距離$1$だけ遠ざけ,$5$または$6$の目が出たときには原点のまわりに$15$度時計方向と逆回りに回転させる.物体$\mathrm{A}$が$y$軸に達するまでこれを続ける.次の問いに答えよ.

(1)物体$\mathrm{A}$が点$(0,\ n) (n=1,\ 2,\ 3,\ \cdots)$に達する確率$P_n$を求めよ.
(2)$P_n$を最大にする$n$を求めよ.
島根県立大学 公立 島根県立大学 2011年 第2問
$\displaystyle \frac{x+y}{5}=\frac{y+3z}{11}=\frac{5z-3x}{8} \neq 0$のとき,次の問いに答えよ.

(1)$x:y:z$の比を求めよ.

(2)$\displaystyle \frac{-3x^3+(9y+z)x^2-3y(z+2y)x+2y^2z}{x^3-x^2y-xz^2+yz^2}$の値を求めよ.

(3)$x,\ y,\ z$を$3$辺とする三角形の最大角の大きさを求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
放物線$\displaystyle C:y=\frac{x^2}{2}$を考える.$0<a<\sqrt{2}$を満たす定数$a$に対して,点$\displaystyle \left(a^3,\ \frac{3a^2}{2}+1 \right)$をPで表す.

(1)点Pと$C$上の点$\displaystyle \left( t,\ \frac{t^2}{2}\right)$との距離が最小となる$t$を$a$を用いて表せ.
(2)(1)で求めた$t$に対して,点$\displaystyle \left( t,\ \frac{t^2}{2}\right)$をQとおく.点Qにおける$C$の接線と,直線PQは直交することを示せ.
(3)点Pと点Qとの距離が最大となるように$a$を定めよ.
広島大学 国立 広島大学 2010年 第4問
$n$は2以上の自然数とする.袋の中に1から$n$までの数字が1つずつ書かれた$n$個の玉が入っている.この袋から無作為に玉を1個取り出し,それに書かれている数を自分の得点としたのち,取り出した玉を袋に戻す.この試行を A,B,Cの3人が順に行い,3人の中で最大の得点の人を勝者とする.たとえば,A,B,Cの得点がそれぞれ$4,\ 2,\ 4$のときはAとCの2人が勝者であり,3人とも同じ得点のときはA,B,Cの3人とも勝者である.勝者が$k$人($k = 1,\ 2,\ 3$)である確率を$P_n(k)$とおくとき,次の問いに答えよ.

(1)勝者が3人である確率$P_n(3)$を$n$を用いて表せ.
(2)$n = 3$の場合に勝者が2人である確率$P_3(2)$を求めよ.
(3)勝者が1人である確率$P_n(1)$を$n$を用いて表せ.
広島大学 国立 広島大学 2010年 第4問
$n$は2以上の自然数とする.袋の中に1から$n$までの数字が1つずつ書かれた$n$個の玉が入っている.この袋から無作為に玉を1個取り出し,それに書かれている数を自分の得点としたのち,取り出した玉を袋に戻す.この試行を A,B,Cの3人が順に行い,3人の中で最大の得点の人を勝者とする.たとえば,A,B,Cの得点がそれぞれ$4,\ 2,\ 4$のときはAとCの2人が勝者であり,3人とも同じ得点のときはA,B,Cの3人とも勝者である.勝者が$k$人($k = 1,\ 2,\ 3$)である確率を$P_n(k)$とおくとき,次の問いに答えよ.

(1)勝者が3人である確率$P_n(3)$を$n$を用いて表せ.
(2)$n = 3$の場合に勝者が2人である確率$P_3(2)$を求めよ.
(3)勝者が1人である確率$P_n(1)$を$n$を用いて表せ.
(4)$P_n(1) \geqq 0.9$となる最小の$n$を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
半径$R$の円$C$の中心を通る直線を$\ell$とする.円$C$上の2点A,Bは弦ABが$\ell$と交わらないように動くものとする.$\ell$を軸として弦ABを回転させてできる図形の面積を$S$とする.ただし,直線$\ell$は円$C$と同一平面上にあるものとする.

(1)弦ABの長さを一定とするならば,弦ABが$\ell$と平行のとき$S$が最大となることを証明せよ.
(2)弦ABの長さが変化するとき,$S$の最大値を求めよ.
東京工業大学 国立 東京工業大学 2010年 第2問
$a$を正の整数とする.正の実数$x$についての方程式
\[ (*) \quad x = \left[ \frac{1}{2} \left( x+ \frac{a}{x} \right) \right] \]
が解を持たないような$a$を小さい順に並べたものを$a_1,\ a_2,\ a_3,\ \cdots$とする.ここに$[ \quad ]$はガウス記号で,実数$u$に対し,$[ \; u \; ]$は$u$以下の最大の整数を表す.

(1)$a = 7,\ 8,\ 9$の各々について,$(*)$の解があるかどうかを判定し,ある場合は解$x$を求めよ.
(2)$a_1,\ a_2$を求めよ.
(3)$\displaystyle \sum_{n=1}^{\infty} \frac{1}{a_n}$を求めよ.
九州大学 国立 九州大学 2010年 第2問
次のような競技を考える.競技者がサイコロを振る.もし,出た目が気に入ればその目を得点とする.そうでなければ,もう$1$回サイコロを振って,$2$つの目の合計を得点とすることができる.ただし,合計が$7$以上になった場合は得点は$0$点とする.この取決めによって,$2$回目を振ると得点が下がることもあることに注意しよう.次の問いに答えよ.

(1)競技者が常にサイコロを$2$回振るとすると,得点の期待値はいくらか.
(2)競技者が最初の目が$6$のときだけ$2$回目を振らないとすると,得点の期待値はいくらか.
(3)得点の期待値を最大にするためには,競技者は最初の目がどの範囲にあるときに$2$回目を振るとよいか.
九州大学 国立 九州大学 2010年 第2問
次のような競技を考える.競技者がサイコロを振る.もし,出た目が気に入ればその目を得点とする.そうでなければ,もう$1$回サイコロを振って,$2$つの目の合計を得点とすることができる.ただし,合計が$7$以上になった場合は得点は$0$点とする.この取決めによって,$2$回目を振ると得点が下がることもあることに注意しよう.次の問いに答えよ.

(1)競技者が常にサイコロを$2$回振るとすると,得点の期待値はいくらか.
(2)競技者が最初の目が$6$のときだけ$2$回目を振らないとすると,得点の期待値はいくらか.
(3)得点の期待値を最大にするためには,競技者は最初の目がどの範囲にあるときに$2$回目を振るとよいか.
横浜国立大学 国立 横浜国立大学 2010年 第4問
$a,\ b$を正の実数とする.曲線
\[ C:\frac{x^2}{a^2}+\frac{(y-b)^2}{b^2}=1 \]
は領域$D:x^2+y^2 \leqq 1$に含まれている.次の問いに答えよ.

(1)$(a,\ b)$が存在する範囲を$ab$平面上に図示せよ.
(2)$C$が囲む部分の面積が最大になるときの$a,\ b$の値を求めよ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。