タグ「最大」の検索結果

40ページ目:全460問中391問~400問を表示)
北海道科学大学 私立 北海道科学大学 2011年 第20問
第$5$項が$101$,第$10$項が$76$である等差数列がある.この数列の初項は$[ ]$であり,初項から第$n$項までの和を最大にする$n$の値は$[ ]$である.
中央大学 私立 中央大学 2011年 第3問
一辺の長さが$a$の正方形を底面とし,高さ$h$の正四角錐がある.下の図のように,この正四角錐に,底面が正方形の正四角柱を内接させる.このとき,以下の問いに答えよ.

(1)内接する正四角柱の底面の一辺の長さを$x$とするとき,この正四角柱の体積を求めよ.
(2)内接する正四角柱の体積が最大になるときの$x$の値を求めよ.また,そのときの正四角柱の体積を求めよ.
(図は省略)
獨協大学 私立 獨協大学 2011年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=3$,$\mathrm{AC}=4$,$\angle \mathrm{ACB}={90}^\circ$とし,辺$\mathrm{AB}$上に点$\mathrm{D}$をとり$\mathrm{AD}=x$とする.点$\mathrm{D}$から$\mathrm{BC}$,$\mathrm{AC}$へ,それぞれ垂線$\mathrm{DE}$,$\mathrm{DF}$を下ろす.

(1)長方形$\mathrm{DECF}$の面積を変数$x$を使って表せ.
(2)長方形$\mathrm{DECF}$の面積が最大となるときの面積と$x$の値を求めよ.
産業医科大学 私立 産業医科大学 2011年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)角$\theta$が$0^\circ \leqq \theta \leqq {90}^\circ$,$\displaystyle \tan \theta=\frac{4}{3}$を満たすとき,$\displaystyle \tan \frac{\theta}{2}$の値は$[ ]$である.
(2)$4$次方程式$2x^4+7x^3+4x^2+7x+2=0$の実数解のうち最大のものは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \{ \sqrt[3]{(n^3-n^2)^2}-2n \sqrt[3]{n^3-n^2}+n^2 \}$の値は$[ ]$である.
(4)円$x^2-8x+y^2-8y+30=0$に接する傾き$1$の$2$つの直線を$\ell_1$,$\ell_2$とする.放物線$y=2x^2+3x-2$と$2$直線$\ell_1$,$\ell_2$によって囲まれる図形の面積は$[ ]$である.ただし,この図形は原点を含むものとする.
(5)$x$を正の実数とするとき,関数$\displaystyle y=\left( \frac{2}{x} \right)^x$の導関数$\displaystyle \frac{dy}{dx}$は$[ ]$である.
(6)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \sqrt{1-2 \sin 2x+3 \cos^2 x} \, dx$の値は$[ ]$である.
(7)バスケットボールのフリースローを,$\mathrm{A}$,$\mathrm{B}$の$2$人がそれぞれ$3$回ずつ試みて,成功した回数が多い方が勝ちとする.$\mathrm{A}$の成功率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$の成功率は$\displaystyle \frac{2}{3}$であるとき,$\mathrm{A}$が勝つ確率は$[ ]$である.ただし,$\mathrm{A}$,$\mathrm{B}$の試行は独立な試行と考える.
(8)$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の数字が書かれた$8$枚のカードがある.カードをもとに戻すことなく,$1$枚ずつ$8$枚すべてを取り出し,左から順に横に一列に並べる.このとき,数字$k$のカードの左側に並んだ$k$より小さい数字のカードの枚数が$k-1$である確率は$[ ]$である.ただし,$k$は$1$から$7$までの整数のいずれかとする.
関西学院大学 私立 関西学院大学 2011年 第3問
実数$x$に対して,$x$以下の最大の整数を$[x]$と表す.例えば,$[1]=1$,$\displaystyle \left[ \frac{5}{2} \right]=2$である.正の整数$n$に対して$\displaystyle a_n=\left[ \frac{2}{3}n \right]$とするとき,次の問いに答えよ.

(1)$a_1$から$a_6$までの$6$つの項を求めよ.
(2)正の整数$m$に対して$\displaystyle \sum_{k=3m-2}^{3m}a_k$を求めよ.
(3)$\displaystyle \sum_{k=1}^{3n}a_k$を求めよ.
(4)$\displaystyle \sum_{k=1}^{3n}ka_k$を求めよ.
福岡大学 私立 福岡大学 2011年 第1問
次の$[ ]$をうめよ.

(1)等式$4x^2=a(x-1)(x-2)+b(x-1)+4$が$x$についての恒等式となるように定数$a,\ b$の組を定めると,$(a,\ b)=[ ]$である.また,このとき$2$次方程式$4x^2+ax+b=0$の$2$つの解を$\alpha,\ \beta$とすると,$\displaystyle \frac{\beta^2}{\alpha}+\frac{\alpha^2}{\beta}$の値は$[ ]$である.
(2)$0 \leqq x \leqq \pi$のとき,方程式$2 \sin^2 x+5 \cos x+1=0$を解くと,$x=[ ]$である.また,$0 \leqq y \leqq 2\pi$とするとき,不等式$\cos 2y+\sin y \geqq 0$を満たす$y$の値の範囲は$[ ]$である.
(3)$1$から$7$までの数字が$1$つずつ書かれた$7$枚のカードがある.この中から$3$枚のカードを同時にとりだす.このとき,カードの数字の和が奇数となる確率は$[ ]$である.また,カードの数字の和が奇数のときは,その$3$つの数の最大の値を得点とし,カードの数字の和が偶数のときには一律に$5$点を得点とするゲームを考えると,このゲームの期待値は$[ ]$点である.
関西学院大学 私立 関西学院大学 2011年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)条件$\displaystyle a_1=-\frac{5}{6}$,$6a_{n+1}-3a_n+4=0$によって定められる数列$\{a_n\}$について考える.この漸化式は$a_{n+1}+[$*$]=[ ](a_n+[$*$])$と変形できる.したがって,一般項は$a_n=[ ]$である.
(2)方程式$(x+1)(x-2)(x+3)(x-4)=-24$について,$X=x^2-x$とおくと,$X$の$2$次方程式$[ ]=0$を得る.その解は$X=[$**$],\ [$***$]$(ただし,$[$**$]<[$***$]$)である.元の方程式の最大の解は$x=[ ]$である.
(3)箱$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$があり,それぞれに$4$個のボールが入っている.各箱のボールには,$1$から$4$までの番号がつけられている.箱$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$からボールを$1$個ずつ取り出し,出た数をそれぞれ$a,\ b,\ c,\ d$とする.$a,\ b,\ c,\ d$の最大の数が$3$以下である場合は$[ ]$通りあり,最大の数が$4$である場合は$[ ]$通りある.また,$a,\ b,\ c,\ d$について,$a+b+c+d=15$となる場合は$[ ]$通りある.
津田塾大学 私立 津田塾大学 2011年 第3問
次の問いに答えよ.

(1)座標平面上の点$(x,\ y)$と点$(a,\ b)$とを結ぶ線分の傾きを求めよ.ただし,$x \neq a$とする.
(2)次の連立不等式の表す領域$D$を図示せよ.$x^2+y^2 \leqq 1,\ y \geqq x^2-1$
(3)$(2)$の領域$D$内の点$(x,\ y)$に対して$\displaystyle \frac{4y-7}{x-3}$が最大となる$(x,\ y)$を求めよ.
高崎経済大学 公立 高崎経済大学 2011年 第3問
放物線$y=-(x-2)^2+1$上に点Pがある.点Pの$x$座標を$a$とし,$\displaystyle \frac{1}{2} \leqq a \leqq \frac{3}{2}$とする.以下の問に答えよ.

(1)放物線上の点Pにおける接線の方程式を求めよ.
(2)点Pから$y$軸に下ろした垂線の足を点Qとする.また,(1)で求めた接線と$y$軸の交点を点Rとする.$\triangle$PQRの面積$S$を$a$で表せ.点Pから$y$軸に下ろした垂線と$y$軸との交点のことである.
(3)(2)で求めた面積$S$が最大になるときの$a$の値とその面積を求めよ.
京都府立大学 公立 京都府立大学 2011年 第1問
$\triangle \mathrm{ABC}$の$3$つの角$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$のそれぞれの大きさを$A,\ B,\ C$とする.以下の問いに答えよ.

(1)$\displaystyle \cos A+\cos B=2 \cos \frac{A+B}{2}\cos \frac{A-B}{2}$を余弦の加法定理から導け.
(2)$(1)$の結果を用いて$\displaystyle \cos A+\cos B \leqq 2\sin \frac{C}{2}$を示せ.また,等号が成り立つのはどのようなときか.
(3)$(2)$の結果を用いて$\cos A+\cos B+\cos C$が最大となるとき,$A,\ B,\ C$を求めよ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。