タグ「最大」の検索結果

38ページ目:全460問中371問~380問を表示)
宮城教育大学 国立 宮城教育大学 2011年 第3問
関数$\displaystyle f(x)=4x+\frac{22}{3}$がある.また関数$g(x)$は等式
\[ g(x)=x(x+2)+\int_{-1}^1 g(t) \, dt \]
を満たす.このとき,次の問いに答えよ.

(1)関数$g(x)$を求めよ.
(2)直線$y=f(x)$と曲線$y=g(x)$の交点の座標を求めよ.
(3)曲線$y=g(x)$と$y$軸の交点を$\mathrm{A}$,直線$y=f(x)$と曲線$y=g(x)$の交点のうち$x$座標の値が小さい方を$\mathrm{B}$,直線$y=f(x)$と$y$軸の交点を$\mathrm{C}$とする.また点$\mathrm{P}$を線分$\mathrm{BC}$上にとり,点$\mathrm{P}$を通り$y$軸に平行な直線と曲線$y=g(x)$の交点を$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$,線分$\mathrm{PA}$,および曲線$y=g(x)$で囲まれた図形の面積が最大となる点$\mathrm{P}$の座標と,そのときの面積を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第2問
医学部における研究では,いろいろな動物が用いられる.これらの動物を生育して,研究者たちに販売する者の立場から,動物$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を題材にして,以下の問題を考察する.

(1)動物$\mathrm{A}$,$\mathrm{B}$を生育するには,$3$種類の栄養素$p,\ q,\ r$が必要である.生育量(単位$\mathrm{kg}$)と栄養素の量は,ともに実数で示される.
(条件a) $\mathrm{A}$を$x \; \mathrm{kg}$生育するには,$p$が$5x$,$q$が$5x$,$r$が$x$の量,同時に必要である.$\mathrm{A}$の販売価格は$10$万円$/ \mathrm{kg}$である.
(条件b) $\mathrm{B}$を$y \; \mathrm{kg}$生育するには,$p$が$4y$,$q$が$y$,$r$が$2y$の量,同時に必要である.$\mathrm{B}$の販売価格は$5$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$,$r$が$2$の量であると仮定する.このとき,$\mathrm{A}$,$\mathrm{B}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ求めよ.
(2)動物$\mathrm{A}$,$\mathrm{B}$に加えて,動物$\mathrm{C}$も$p,\ q,\ r$の栄養素によって生育できることがわかる.
(条件c) $\mathrm{C}$を$z \; \mathrm{kg}$生育するには,$p$が$2z$,$q$が$3z$,$r$が$z$の量,同時に必要である.$\mathrm{C}$の販売価格は$8$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$の量であるが,(1)の場合と違って$r$はいくらでも手に入るものと仮定する.次の問い$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{C}$の生育量$z \; \mathrm{kg}$は,$\displaystyle z=k \ \left( 0 \leqq k \leqq \frac{11}{10} \right)$として値を固定し,$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ$x \; \mathrm{kg}$,$y \; \mathrm{kg}$として変化させる.このとき,点$(x,\ y)$の動く領域$D(k)$を図示せよ.さらに,$(x,\ y)$がこの領域を動くとき,販売額の最大値を$w(k)$とかく.$w(k)$を$k$の式で表せ.
(ii) $\mathrm{C}$の生育量$z=k$を,$\displaystyle 0 \leqq k \leqq \frac{11}{10}$の範囲から$\displaystyle \frac{11}{10} \leqq k \leqq \frac{4}{3}$の範囲に変更する.このとき,点$(x,\ y)$の動く領域$D(k)$および販売額の最大値$w(k)$はどうなるか,調べよ.
(iii) $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の生育量をそれぞれ求めよ.
早稲田大学 私立 早稲田大学 2011年 第6問
図のように,点$\mathrm{O}$を中心とする半径$1$の円に内接する正$9$角形の頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_9$から,長さが最大となる対角線を$2$本ずつ引き,それらの交点を$\mathrm{B}_1$,$\mathrm{B}_2$,$\cdots$,$\mathrm{B}_9$とする.これらの点を$\mathrm{A}_1 \to \mathrm{B}_1 \to \mathrm{A}_2 \to \mathrm{B}_2 \to \cdots \to \mathrm{A}_9 \to \mathrm{B}_9 \to \mathrm{A}_1$の順に線分で結んでできた図形を星型$S$とよぶ.ここで,$\tan 10^\circ=a$とするとき,$\triangle \mathrm{OA}_1 \mathrm{B}_1$の辺$\mathrm{OA_1}$を底辺としたときの高さを$h$とすると
\[ h=\frac{[ナ]a}{[ニ]-a^{[ヌ]}} \]
である.よって,星型$S$の面積は$[ネ]h$である.
(図は省略)
早稲田大学 私立 早稲田大学 2011年 第1問
次の各問に答えよ.

(1)ある工場の製品が$50$個あり,その中に不良品が$2$個だけ含まれている.このとき次の問いに答えよ.

(2)この$50$個の製品の中から$5$個を同時に取り出したとき,少なくとも$1$個の不良品が含まれる確率は$[ア]$である.
(3)この$50$個の製品の中から同時にいくつかの製品を取り出したとき,$1$個以上の不良品が含まれる確率を$\displaystyle\frac{1}{2}$より大きくなるようにしたい.このときに,取り出す製品の個数は少なくとも$[イ]$個でなければならない.

(4)$x^2+y^2=25$で表される円$A$がある.点$(7,\ 1)$から円$A$に接線を引く.

(5)接線の方程式は,$y=-[ウ]x+[エ]$と$y=[オ]x-[カ]$で表される.$[ウ]$,$[エ]$,$[オ]$,$[カ]$を正の分数で表せ.
(6)上で求めた$2$本の接線に接し,さらに円$A$に接する円は$[キ]$個ある.これらの$[キ]$個の円の半径で,最大の半径は$[ク]$であり,最小の半径は$[ケ]$である.
早稲田大学 私立 早稲田大学 2011年 第4問
$xy$-平面上の原点を$\mathrm{O}$とし,楕円$\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>b>0)$を$E$とする.$E$上の点$\mathrm{P}(s,\ t)$における$E$の法線と$x$軸との交点を$\mathrm{Q}$とする.点$\mathrm{P}$が$s>0,\ t>0$の範囲を動くとき,$\angle \mathrm{OPQ}$が最大になる点$\mathrm{P}$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第4問
$a>0$とし,$x$-$y$平面上に3点O$(0,\ 0)$,A$(a,\ 0)$,P$(x,\ y)$をとる.$l$を与えられた正定数として,Pが
\[ 2\text{PO}^2 + \text{PA}^2 = 3l^2 \dotnum{*} \]
をみたすとする.このとき,次の各問に答えよ.

(1)\maru{*}をみたすPの集合が空集合とならないための$a$の条件を求め,そのときのP$(x,\ y)$の軌跡を表す方程式を求めよ.
(2)3点O,\ A,\ Pが一直線上にないようなPが存在するとき,OAを軸として,$\triangle$POAを回転して立体をつくる.この立体の体積が最大になるときのPの$x$座標と最大の体積$V$を,$a$を用いて表せ.
(3)(2)で求めた体積$V$を最大とする$a$の値とそのときの最大の体積を求めよ.
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
上智大学 私立 上智大学 2011年 第1問
$a,\ b,\ c$は整数で,$a \geqq 1,\ b \geqq 0,\ c \geqq 0$とする.$x$の2次式$P(x)=ax^2+bx+c$を考える.

(1)$P(1)=2$を満たす$P(x)$は全部で[ア]個存在する.
(2)条件 \[ \lceil P(n)=5 \text{を満たす自然数}n\text{が存在する}\rfloor \]
を満たす$P(x)$は全部で[イ]個存在する.
このような$P(x)$のうち,$P(3)=17$を満たすものは
\[ P(x) = [ウ]x^2+[エ]x+[オ] \]
である.
(3)条件
\[ \lceil P(n)=3 \text{を満たす自然数}n\text{が存在し,} \]
\[ \qquad \qquad \text{かつ,任意の自然数}m\text{に対して}P(m)\text{が奇数である}\rfloor \]
を満たす$P(x)$のうち,$a$が最大のものは
\[ P(x) = [カ]x^2+[キ]x+[ク] \]
であり,$a$が最小のものは
\[ P(x) = [ケ]x^2+[コ]x+[サ] \]
である.
北海学園大学 私立 北海学園大学 2011年 第2問
$1$枚の硬貨を$10$回投げるとき,表がちょうど$k$回出る確率を$p_k$と表す.ただし,$0 \leqq k \leqq 10$とする.

(1)$p_0,\ p_1,\ p_2$の値をそれぞれ求めよ.
(2)表が少なくとも$3$回以上出る確率を求めよ.
(3)$p_k$が最大となる$k$の値を求めよ.
明治大学 私立 明治大学 2011年 第3問
次の連立不等式で表される領域$D$を考える.
\[ \left\{ \begin{array}{l}
\displaystyle \left( x-\frac{1}{2} \right)^2+y^2 \leqq 1 \\
\displaystyle y \leqq -2x+\frac{3}{2} \\
\displaystyle y \leqq x+\frac{7}{10}
\end{array} \right. \]
以下の問に答えなさい.

(1)$y$切片が$k$で,直線$\displaystyle y=-2x+\frac{3}{2}$に垂直な直線を$\ell$とする.直線$\ell$が領域$D$と共有点を持つとき,$k$のとる範囲は,
\[ -\frac{[チ]}{[ツ]}-\frac{\sqrt{[テ]}}{[ト]} \leqq k \leqq \frac{[ナ]}{[ニ]} \]
である.
(2)直線$\ell$が領域$D$で切り取られる線分の長さを$L$とおく.$L$が最大となるのは,$\displaystyle k=-\frac{[ヌ]}{[ネ]}$のときであり,そのとき,$\displaystyle L=[ノ]+\frac{\sqrt{[ハ]}}{[ヒフ]}$となる.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。