タグ「最大」の検索結果

36ページ目:全460問中351問~360問を表示)
名古屋大学 国立 名古屋大学 2011年 第1問
$\displaystyle -\frac{1}{4}<s<\frac{1}{3}$とする.$xyz$空間内の平面$z = 0$の上に長方形
\[ R_s = \{f(x,\ y,\ 0) \; | \; 1 \leqq x \leqq 2+4s,\ 1 \leqq y \leqq 2-3s\} \]
がある.長方形$R_s$を$x$軸のまわりに$1$回転してできる立体を$K_s$とする.

(1)立体$K_s$の体積$V(s)$が最大となるときの$s$の値,およびそのときの$V(s)$の値を求めよ.
(2)$s$を$(1)$で求めた値とする.このときの立体$K_s$を$y$軸のまわりに$1$回転してできる立体$L$の体積を求めよ.
岡山大学 国立 岡山大学 2011年 第4問
$f(x) = e^{-x^2}$とする.曲線$y = f(x)$上の点A$(a,\ f(a))$における接線を$\ell$,原点$\mathrm{O}$を通り$\ell$に垂直な直線を$\ell^\prime$とし,$\ell$と$\ell^\prime$との交点を$\mathrm{P}$とする.

(1)線分$\mathrm{OP}$の長さを求めよ.
(2)$\ell$と$y$軸との交点を$\mathrm{Q}$とし,$\angle \mathrm{POQ}$を$\theta \ (0 \leqq \theta \leqq \pi)$とする.$\sin \theta$を$a$を用いて表せ.
(3)$(2)$で求めた$\sin \theta$を最大にする$a$の値と,そのときの$\sin \theta$の値を求めよ.
金沢大学 国立 金沢大学 2011年 第2問
行列$A=\left( \begin{array}{cc}
2 & 3 \\
1 & 2
\end{array} \right),\ P=\left( \begin{array}{cc}
\sqrt{3} & -\sqrt{3} \\
1 & 1
\end{array} \right)$に対して,$B=P^{-1}AP$とおく.また,$n=1,\ 2,\ 3,\ \cdots$に対して,$a_n,\ b_n$を
\[ \left( \begin{array}{c}
a_n \\
b_n 
\end{array} \right) = A^n \left( \begin{array}{c}
2 \\
0
\end{array} \right) \]
で定める.次の問いに答えよ.

(1)$P^{-1}$および$B$を求めよ.
(2)$a_n,\ b_n$を求めよ.
(3)実数$x$を超えない最大の整数を$[ \; x \; ]$で表す.このとき
\[ \left[(2+\sqrt{3})^n \right] = a_n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を示せ.また
\[ c_n = (2+\sqrt{3})^n - \left[ (2+\sqrt{3})^n \right] \]
とするとき,$\displaystyle \lim_{n \to \infty} c_n$の値を求めよ.
東京工業大学 国立 東京工業大学 2011年 第4問
平面上に一辺の長さが1の正方形$D$および$D$と交わる直線がある.この直線を軸に$D$を回転して得られる回転体について以下の問に答えよ.

(1)$D$と同じ平面上の直線$\ell$は$D$のどの辺にも平行でないものとする.軸とする直線は$\ell$と平行なものの中で考えるとき,回転体の体積を最大にする直線は$D$と唯1点で交わることを示せ.
(2)$D$と交わる直線を軸としてできるすべての回転体の体積の中で最大となる値を求めよ.
千葉大学 国立 千葉大学 2011年 第5問
$a$は正の実数とし,座標平面上の直線$\ell: y = x$と放物線$C : y = ax^2$を考える.$C$上の点$\displaystyle (x,\ y) \ \bigl( \text{ただし} 0 < x < \frac{1}{a} \bigr)$で$\ell$との距離を最大にする点を$\mathrm{P}(s,\ t)$とおく.また$\mathrm{P}$と$\ell$の距離を $d$とおく.以下の問いに答えよ.

(1)$d,\ s,\ t$をそれぞれ$a$の式で表せ.また点$\mathrm{P}$での放物線$C$の接線の傾きを求めよ.
(2)実数$a$を$a > 0$の範囲で動かしたとき,点$\mathrm{P}(s,\ t)$の軌跡を求め,図示せよ.
筑波大学 国立 筑波大学 2011年 第2問
自然数$n$に対し,関数
\[ F_n(x) = \int_x^{2x} e^{-t^n} \, dt \quad (x \geqq 0) \]
を考える.

(1)関数$F_n(x) \ (x \geqq 0)$はただ一つの点で最大値をとることを示し,$F_n(x)$が最大となるような$x$の値$a_n$を求めよ.
(2)(1)で求めた$a_n$に対し,極限値$\displaystyle \lim_{n \to \infty} \log a_n$を求めよ.
千葉大学 国立 千葉大学 2011年 第14問
次の問いに答えよ.

(1)不等式
\[ \sqrt{x^2+y^2} \geqq x+y+a\sqrt{xy} \]
が任意の正の実数$x,\ y$に対して成立するような,最大の実数$a$の値を求めよ.
(2)$0$以上$1$以下の実数$a,\ b,\ c,\ d$に対して
\[ abcd \leqq \frac{4}{27} \ \text{または} \ (1-a^2)(1-b^2)(1-c^2)(1-d^2) \leqq \frac{4}{27} \]
が成り立つことを証明せよ.
東京医科歯科大学 国立 東京医科歯科大学 2011年 第2問
座標平面において,原点をOとし,次のような3点P,Q,Rを考える.

\mon[(a)] 点Pは$x$軸上にあり,その$x$座標は正である.
\mon[(b)] 点Qは第1象限にあって,$\text{OQ}=\text{QP}=1$を満たす.
\mon[(c)] 点Rは第1象限にあって,$\text{OR}+\text{RP}=2$を満たし,かつ線分RPが$x$軸に垂直となる.

ただし,座標軸は第1象限に含めないものとする.このとき以下の各問いに答えよ.

(1)上の条件を満たす2点Q,Rが存在するような,点Pの$x$座標が取りうる値の範囲を求めよ.
(2)(1)の範囲を点Pが動くとき,線分QRが通過する領域を図示し,その面積を求めよ.
(3)線分OPの中点をMとする.(1)の範囲を点Pが動くとき,四角形MPRQの面積を最大にする点Pの$x$座標を求めよ.
鳥取大学 国立 鳥取大学 2011年 第4問
半径$a\;$cmの球$B$を,球の中心を通る鉛直軸に沿って毎秒$v\;$cmの速さで下の方向に動かし,水で一杯に満たされた容器Qに沈めていく.球$B$を沈め始めてから$t$秒後までにあふれ出る水の体積を$V\;$cm$^3$とするとき,次の問いに答えよ.ただし,$a,\ v$は正の定数で,容器$Q$に球$B$を完全に水没させることができるとする.

(1)$V$を$a,\ v,\ t$の式で表せ.また変化率$\displaystyle \frac{dV}{dt}$が最大になるのは,沈め始めてから何秒後か.
(2)容器$Q$は一辺の長さが$b$の正四面体から一面を取り除いた形をしており,開口した面は水平に保たれている.球$B$は完全に水面下に入った瞬間,水面と容器$Q$の3つの面に接するという.$b$を$a$で表せ.
宇都宮大学 国立 宇都宮大学 2011年 第5問
座標平面上の直線$y=mx \ (m>0)$を$\ell$とする.点$(1,\ 0)$を$\mathrm{P}_1$とし,$\mathrm{P}_1$から$\ell$に下ろした垂線の足を$\mathrm{Q}_1$,$\mathrm{Q}_1$から$x$軸に下ろした垂線の足を$\mathrm{P}_2$とする.以下同様に$\mathrm{P}_n \ (n=1,\ 2,\ \cdots)$から$\ell$に下ろした垂線の足を$\mathrm{Q}_n$,$\mathrm{Q}_n$から$x$軸に下ろした垂線の足を$\mathrm{P}_{n+1}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$の面積$S_1$を$m$を用いて表せ.
(2)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1} \ (n=1,\ 2,\ \cdots)$の面積を$S_n$とするとき,級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を$m$を用いて表せ.
(3)(2)における$S$が最大になる$m$と,そのときの$S$の値を求めよ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。