タグ「最大」の検索結果

35ページ目:全460問中341問~350問を表示)
杏林大学 私立 杏林大学 2012年 第3問
$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす$\theta$と正の実数$p$に対して,$a_1=\log_4 (p \sin \theta)$,$a_2=\log_4 (\sin 2\theta)$,$a_3=\log_4 (\sin 3\theta)$とする.

(1)$a_1=a_2=a_3$となるのは,
\[ p=\frac{[ア]+\sqrt{[イ]}}{[ウ]},\quad \theta=\frac{[エ]}{[オ]} \pi \]
のときである.
(2)$3$つの数$a_1,\ a_2,\ a_3$がこの順に等差数列をなしているとする.このとき,
\[ p>\frac{[カ]}{[キ]} \]
となる.$p$をこの範囲で変化させたとき,$a_2+a_3$が最大となるのは,
\[ \cos^2 \theta=\frac{[クケ]+\sqrt{[コサシ]}}{[スセ]},\quad p=\frac{[ソ]+\sqrt{[コサシ]}}{[タチ]} \]
のときである.
(3)$p=2$で,$a_1,\ a_2,\ a_3$がこの順に等差数列をなしているとき,この数列の初項$a_1$および公差$d$は
\[ a_1=\frac{[ツ]}{[テ]},\quad d=\frac{[トナ]}{[ニ]} \]
である.この初項と公差を持つ等差数列$\{a_k\} (k=1,\ 2,\ 3,\ \cdots)$に対して,極限値
\[ \alpha=\lim_{n \to \infty} \sum_{k=1}^n 2^{2a_k} \]
を定義すると,$\alpha$は$2$次方程式
\[ x^2-[ヌ] x-[ネ]=0 \]
の解となっている.
北海道科学大学 私立 北海道科学大学 2012年 第11問
$x$の$2$次関数$y=ax^2+4ax+b (a>0)$について次の各問に答えよ.

(1)この関数のグラフの頂点の座標を$a,\ b$を用いて表せ.
(2)この関数の値が$-3 \leqq x \leqq 2$において,最大になるときと最小になるときの$x$の値をそれぞれ求めよ.
(3)$-3 \leqq x \leqq 2$におけるこの関数の最大値が$3$,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.
(4)$(3)$のとき,この$2$次関数のグラフの$x$軸および$y$軸との共有点を求めて,グラフを描け.
京都府立大学 公立 京都府立大学 2012年 第1問
以下の問いに答えよ.

(1)$\displaystyle \frac{6}{3-\sqrt{3}}$の整数部分を$a$,小数部分を$b$とするとき,$a^2+b^2$の値を求めよ.
(2)$(x+2)^{12}$の展開式における最大の係数の値を求めよ.
(3)$3$辺の長さがそれぞれ$4$,$5$,$6$である三角形に内接する円の半径を求めよ.
高崎経済大学 公立 高崎経済大学 2012年 第1問
以下の各問に答えよ.

(1)$3$次関数$f(x)=ax^3+bx^2-6$がある.$f^{\prime}(1)=7,\ f^{\prime}(-2)=4$となるように定数$a,\ b$の値を定めよ.
(2)次の計算をせよ.ただし,$i^2=-1$である.$\displaystyle \frac{2-i}{1+2i}$
(3)$(2x^2-1)^6$を展開したとき,$x^4$の項の係数を求めよ.
(4)$20$本のくじがあり,当たりくじの賞金と本数は$1$等$1000$円が$1$本,$2$等$500$円が$2$本,$3$等$300$円が$3$本である.ただし,はずれくじの賞金は$0$円である.いま,この中から$1$本のくじを引くときの賞金の期待値を求めよ.
(5)$x$は実数とする.命題「$x>0 \Longrightarrow |-x|>|x-1|$」の真偽を答えよ.また,偽であるときは反例をあげよ.
(6)初項$1$,公比$9$の等比数列$\{a_n\} \ (n=1,\ 2,\ \cdots)$を考える.不等式
\[ a_1+a_2+\cdots +a_k \leqq 2^{20}-2^{-3} \]
を満たす最大の整数$k$の値を求めよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.
(7)$\sqrt[12]{20000},\ \sqrt[3]{6+4\sqrt{3}},\ \sqrt[2]{4+\sqrt{2}}$の$3$数の大小を比較せよ.
(8)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$2:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{D}$,$2$直線$\mathrm{AD}$,$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
京都府立大学 公立 京都府立大学 2012年 第3問
$n,\ a_n,\ b_n$を自然数とし,$(2+\sqrt{3})^n=a_n+\sqrt{3}b_n$とする.以下の問いに答えよ.

(1)$a_{n+1},\ b_{n+1}$を$a_n,\ b_n$を用いて表せ.
(2)$(2-\sqrt{3})^n=a_n-\sqrt{3}b_n$となることを数学的帰納法を用いて証明せよ.
(3)$(2+\sqrt{3})^n$以下の整数のうち最大のものを$pa_n+q$とする.$p$と$q$の値を求めよ.
愛知県立大学 公立 愛知県立大学 2012年 第2問
三角形ABCにおいて$\angle \text{A}=\theta,\ \angle \text{B}=2\theta$であるとする.このとき,以下の問いに答えよ.ただし,$\lceil \ \cdot \ \rfloor$はベクトルの内積を表す.

(1)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{BC}}|}$を,$\cos \theta$を用いて表せ.
(2)次式が最大となるときの$\cos \theta$を求めよ.
\[ \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}|}+\frac{\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}}}{|\overrightarrow{\mathrm{CB}}||\overrightarrow{\mathrm{CA}}|} \]
(3)$\angle \text{B}$の二等分線と辺ACとの交点をDとしたとき,次式を満たす$\theta$を求めよ.
\[ \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}|}+\frac{\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}}}{|\overrightarrow{\mathrm{CB}}||\overrightarrow{\mathrm{CA}}|} = \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AD}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BD}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BD}}|}+\frac{\overrightarrow{\mathrm{DB}} \cdot \overrightarrow{\mathrm{DA}}}{|\overrightarrow{\mathrm{DB}}||\overrightarrow{\mathrm{DA}}|} \]
奈良県立医科大学 公立 奈良県立医科大学 2012年 第1問
実数$p,\ q$に対して,$x$の$3$次関数$f_{p,q}(x)$を$f_{p,q}(x)=x^3+px+q$によって定める.実数$p,\ q$は,$3$次関数$f_{p,q}(x)$が以下の$3$条件を満たすような範囲を動くとする.

条件$(ⅰ)$:$f_{p,q}(1)=1$
条件$(ⅱ)$:$f^\prime_{p,q}(0)<0$(ただし,$f^\prime_{p,q}(x)$は$f_{p,q}(x)$の導関数を表す.)
条件$(ⅲ)$:$x \geqq 0$のとき,$f_{p,q}(x) \geqq 0$

このとき,定積分
\[ I(p,\ q)=\int_0^1 f_{p,q}(x) \, dx \]
を最大にするような$p,\ q$の値,および$I(p,\ q)$の最大値を求めよ.
東京大学 国立 東京大学 2011年 第1問
座標平面において,点P$(0,\ 1)$を中心とする半径1の円を$C$とする.$a$を$0<a<1$を満たす実数とし,直線$y=a(x+1)$と$C$との交点をQ,Rとする.

(1)$\triangle$PQRの面積$S(a)$を求めよ.
(2)$a$が$0<a<1$の範囲を動くとき,$S(a)$が最大となる$a$を求めよ.
秋田大学 国立 秋田大学 2011年 第3問
平面上の相異なる3点O,A,Bに対して,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$\displaystyle \overrightarrow{p}=\overrightarrow{a}+2\overrightarrow{b},\ \overrightarrow{q}=\frac{-\overrightarrow{a}+2\overrightarrow{b}}{4}$とする.また,$\overrightarrow{p}=\overrightarrow{\mathrm{OP}},\ \overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$であるような2点P,Qをとる.$|\overrightarrow{p}|=4,\ |\overrightarrow{q}|=1$であるとき,次の問いに答えよ.

(1)$|\overrightarrow{a}|=|\overrightarrow{b}|$のとき,内積$\overrightarrow{p} \cdot \overrightarrow{q}$を求めよ.
(2)2点A,Bを通る直線と,2点P,Qを通る直線が直交するとき,内積$\overrightarrow{p} \cdot \overrightarrow{q}$を求めよ.
(3)$\triangle$OABの面積が最大になるとき,$\overrightarrow{p}$と$\overrightarrow{q}$のなす角$\theta$を求めよ.
静岡大学 国立 静岡大学 2011年 第3問
実数$t$が$\displaystyle 0 \leqq t \leqq \frac{2}{3}$の範囲を変化するとき,2つの曲線
\[ C : y = -2x^2+3x,\quad C_t: y = |x^2-3tx| \]
で囲まれる図形の面積を$S(t)$とおく.次の問いに答えよ.

(1)2曲線$C,\ C_t$の交点の$x$座標をすべて求めよ.
(2)$S(t)$を$t$の式で表せ.
(3)$S(t)$を最大にする$t$の値を求めよ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。