タグ「最大」の検索結果

27ページ目:全460問中261問~270問を表示)
東京電機大学 私立 東京電機大学 2013年 第3問
$t$を正の実数とする.座標平面上で点$\mathrm{A}(1,\ 1)$を中心とし点$\mathrm{B}(1,\ 0)$を通る円と,直線$y=tx$との$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とするとき,次の問に答えよ.

(1)点$\mathrm{A}$と直線$y=tx$との距離を$t$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(3)$\triangle \mathrm{BPQ}$の面積$S$を$t$を用いて表せ.
(4)$(3)$の面積$S$が最大になるときの$t$の値を求めよ.
北里大学 私立 北里大学 2013年 第1問
$2$つの関数$f(x)=x^3-6x^2+9x+1$と$g(x)=|-x^2+6x-3|-2$がある.

(1)関数$f(x)$は,極大値$[ア]$,極小値$[イ]$をとる.
(2)関数$y=g(x)$のグラフと直線$x+y=k$が異なる$4$個の共有点をもつ.このとき,実数$k$のとり得る値の範囲は,$[ウ]<k<[エ]$である.
(3)方程式$f(x)=g(x)$の解のうち,最小のものは$x=[オ]$であり,最大のものは$x=[カ]$である.
北里大学 私立 北里大学 2013年 第2問
$f(x)=x^3-x^2+12$とおく.原点を通り,曲線$y=f(x)$に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)曲線$y=f(x)$と直線$\ell$との接点以外の共有点の座標を求めよ.
(3)曲線$y=f(x)$と直線$\ell$との共有点を$\mathrm{P}(a,\ f(a))$,$\mathrm{Q}(b,\ f(b)) (a<b)$とする.曲線$y=f(x)$上の点$\mathrm{R}(c,\ f(c))$が$a<c<b$を満たしながら動くとき,三角形$\mathrm{PQR}$の面積が最大となるような$c$の値を求めよ.
東京薬科大学 私立 東京薬科大学 2013年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の下で,関数$f(\theta)=-\sin 2\theta+\sqrt{2}(\sin \theta+\cos \theta)$を考える.

(1)$t=\sin \theta+\cos \theta$とおくとき,$t$の取り得る値の範囲は$[$*$チ] \leqq t \leqq \sqrt{[ツ]}$である.
(2)$f(\theta)$を$t$の式で表すと,$[$*$テ]t^2+\sqrt{[ト]}t+[$*$ナ]$となる.
(3)$f(\theta)$が最大になるのは$\displaystyle \theta=\frac{[$*$ニ]}{[ヌネ]}\pi$のときで,最大値は$\displaystyle \frac{[ノ]}{[ハ]}$である.最小になるのは$\displaystyle \theta=\frac{[$*$ヒ]}{[フ]} \pi$のときで,最小値は$-\sqrt{[ヘ]}$である.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a,\ b$を定数とする.座標平面において,$x^2+y^2+ax+by=0$は中心を点$([ ],\ [ ])$とする半径$[ ]$の円の方程式である.サイコロを$2$度投げ,最初に出た目を$a$とし,次に出た目を$b$とする.この円の内部の面積が$4 \pi$以下である確率は$[ ]$である.また,この円が直線$x+y=a-b$と異なる$2$点で交わる確率は$[ ]$である.
(2)$2013$を素因数分解すると$[ ]$である.$x=[ ]$,$y=0$は,方程式$11x+25y=2013$をみたす.$x,\ y$を共に$0$以上の整数とするとき,方程式$11x+25y=2013$をみたす$(x,\ y)$の組は全部で$[ ]$組あり,それらの中で$x^2+y^2$の値が最大になるのは$x=[ ]$,$y=[ ]$のときである.
桜美林大学 私立 桜美林大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての不等式$\displaystyle \frac{2x-a}{3}<\frac{x-3}{2}$をみたす最大の整数が$3$となるような実数の定数$a$がとり得る値の範囲を次の$①$~$⑤$から選ぶと$[ア]$である.
\[ ① 6<a \quad ② 6 \leqq a \quad ③ 6<a<\frac{13}{2} \quad ④ 6 \leqq a<\frac{13}{2} \quad ⑤ 6<a \leqq \frac{13}{2} \]
(2)$1000$以下の自然数で,$3$または$5$で割りきれる数は$[イ][ウ][エ]$個であり,そのうち偶数でないものは$[オ][カ][キ]$個ある.
(3)$2$つの方程式$x^2-2ax+2a^2+a-2=0$と$x^2+(2a+2)x-a+1=0$がともに実数解をもつような定数$a$の値の範囲は$[ク] \leqq a \leqq [ケ]$である.
(4)$0 \leqq x \leqq \pi$とする.関数$y=4 \sin x+3 \cos x$の最小値は$[コ]$であり,$y$の最大値を与える$x$の値を$\theta$とすると,$\displaystyle \sin 2\theta=\frac{[サ][シ]}{[ス][セ]}$である.
(5)$x$の関数$f(x)$が$\displaystyle f(x)=\int_0^1 xtf(t) \, dt+2$を満たすとき,$\displaystyle f(x)=\frac{[ソ]}{[タ]}x+[チ]$である.
産業医科大学 私立 産業医科大学 2013年 第3問
$b$を$b>1$となる定数とする.原点を$\mathrm{O}$とする座標平面上の点$\mathrm{P}(x_0,\ y_0)$の座標は${x_0}^2+{y_0}^2=b$,${x_0}^2 \geqq 1$を満たすとする.このとき,点$\displaystyle \mathrm{Q} \left( \frac{x_0}{\sqrt{3}},\ x_0{y_0}^2 \right)$に対し,次の問いに答えなさい.

(1)${x_0}^2=t$とおくとき,線分$\mathrm{OQ}$の長さの$2$乗$\mathrm{OQ}^2$を$t$の関数として表しなさい.
(2)線分$\mathrm{OQ}$の長さを最大にする${x_0}^2$を求めなさい.
早稲田大学 私立 早稲田大学 2013年 第2問
面積$1$の正三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$の中点を$\mathrm{M}$とする.正の実数$t$に対し,線分$\mathrm{AM}$を$1:t$に内分する点を$\mathrm{P}$とし,さらに直線$\mathrm{BP}$と辺$\mathrm{AC}$の交点を$\mathrm{Q}$,直線$\mathrm{CP}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.次の設問に答えよ.

(1)$\displaystyle \frac{\mathrm{QC}}{\mathrm{AQ}}$を$t$を用いて表せ.
(2)三角形$\mathrm{MQR}$の面積が最大となる$t$の値と,そのときの面積を求めよ.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)不等式$x |x+2|<2x$の解は$[ア]$である.

(2)$a$を実数とする.$\displaystyle \frac{3+i}{1+ai}$の実部と虚部の和が$0$であるとき,$a=[イ]$である.ただし,$i$は虚数単位とする.
(3)座標平面上の点$(2,\ 1)$から円$x^2+y^2=1$へ引いた接線の方程式は$y=1$と$y=[ウ]$である.
(4)${128}^{\frac{1}{6}},\ 8^{\frac{2}{5}},\ {81}^{\frac{1}{5}}$のうち最大のものは$[エ]$である.
(5)$\cos {165}^\circ$の値は$[オ]$である.
(6)平面上に三角形$\mathrm{OAB}$と点$\mathrm{P}$があり,$\overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たしている.直線$\mathrm{AB}$と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}}$である.
(7)数列$\{a_k\}$は$a_1=0$と漸化式$a_{k+1}=2a_k+1 (k=1,\ 2,\ 3,\ \cdots)$で定められている.このとき,$\displaystyle \sum_{k=1}^n \log_8 (1+a_k)=[ク]$である.
(8)数字の$1$が書かれたカードが$1$枚,数字の$2$が書かれたカードが$2$枚,数字の$3$が書かれたカードが$3$枚ある.この$6$枚のカード全部を$1$列に並べるとき,数字の$2$が書かれたカードが連続して並ぶ確率は$[ケ]$である.
兵庫県立大学 公立 兵庫県立大学 2013年 第3問
$1,\ 2,\ 3,\ 4$の目を持ったサイコロがある.$1$と$3$の目がそれぞれ$2$つずつあり,$2$と$4$の目は$1$つずつである.このサイコロを$1$以外の目が出るまで振り続ける.出た目の数の総和が$n$である確率を$P_n$とする.次の問に答えなさい.

(1)出た目の数の総和が$6$となるサイコロの目の出方を全て列挙しなさい.
(2)$P_2,\ P_3,\ P_4$をそれぞれ求めなさい.
(3)出た目の数の総和が$5$以上である確率を求めなさい.
(4)$P_n$が最大となる$n$の値を求めなさい.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。