タグ「最大」の検索結果

23ページ目:全460問中221問~230問を表示)
秋田県立大学 公立 秋田県立大学 2014年 第4問
平面上に三つの異なる定点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.また,同じ平面上に動点$\mathrm{P}$があり,$\displaystyle \angle \mathrm{APB}=\frac{\pi}{2}$を満たす.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OM}}=\overrightarrow{m}$とする.以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$,$(3)$は解答とともに導出過程も記述せよ.

(1)$\overrightarrow{m}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$|\overrightarrow{\mathrm{MP}}|$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=\sqrt{14}$,$\overrightarrow{a} \cdot \overrightarrow{b}=-6$が成り立つ.また,$\overrightarrow{a}$と$\overrightarrow{m}$のなす角を$\alpha$,$\overrightarrow{a}$と$\overrightarrow{\mathrm{MP}}$のなす角を$\beta$とする.ただし,$0 \leqq \alpha \leqq \pi$,$0 \leqq \beta \leqq \pi$とする.以下の設問$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\cos \alpha$の値を求めよ.
(ii) $\triangle \mathrm{OPA}$の面積が最大となるときの$\beta$の値を求めよ.
(iii) $\triangle \mathrm{OPA}$の面積の最大値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第2問
次の問いに答えよ.

(1)方程式$\log_3 (x-1)+\log_9 (x+9)-1=0$を解け.
(2)$1$辺の長さが$1$の正方形の紙から右図のように高さが$x$の合同な$4$枚の二等辺三角形を切りとって除き,四角錐の展開図を作る.その展開図を折り曲げて作られる四角錐の体積$V$が最大となる$x$と,その時の体積$V$の最大値を求めよ.
(図は省略)
東北大学 国立 東北大学 2013年 第5問
2次の正方行列$A$を$A=\left( \begin{array}{cc}
-\displaystyle\frac{1}{\sqrt{2}} & -\displaystyle\frac{1}{\sqrt{2}} \\
\displaystyle\frac{1}{\sqrt{2}} & -\displaystyle\frac{1}{\sqrt{2}} \\
\end{array} \right)$で定める.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_n(x_n,\ y_n)$を関係式
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right)+\left( \begin{array}{c}
1 \\
0
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$x_0=1,\ y_0=0$とする.

(1)$A^4$を求めよ.
(2)$n=0,\ 1,\ 2,\ \cdots$に対して,
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=(E-A^{n+1})(E-A)^{-1} \left( \begin{array}{c}
1 \\
0
\end{array} \right) \]
が成り立つことを示せ.ただし,$E$は2次の単位行列とする.
(3)原点$\mathrm{O}$から$\mathrm{P}_n$までの距離$\mathrm{OP}_n$が最大となる$n$を求めよ.
広島大学 国立 広島大学 2013年 第4問
平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OB}}|=1$かつ$\angle \mathrm{AOB}=\theta \ (0<\theta<\pi)$を満たすとする.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.$t>1$として,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=-t \overrightarrow{\mathrm{OM}}$となるように定める.$\triangle \mathrm{ABC}$の面積を$S$とする.次の問いに答えよ.

(1)$S$を$t$と$\theta$を用いて表せ.
(2)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$を$t$のみを用いて表せ.
(3)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$が最大となる$t$の値を求めよ.
信州大学 国立 信州大学 2013年 第1問
次の問いに答えよ.

(1)不等式$\log_3(x-2)+2 \log_9(x-4)<1$を解け.
(2)$\mathrm{O}$を原点とする座標空間の座標軸上に,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ \sqrt{6},\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$がある.線分$\mathrm{OA}$,$\mathrm{OC}$,$\mathrm{BC}$,$\mathrm{BA}$を$t:1-t$に内分する点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.この$4$点により定まる長方形$\mathrm{PQRS}$の面積$M(t)$が最大となるとき,ベクトル$\overrightarrow{\mathrm{PR}}$,$\overrightarrow{\mathrm{QS}}$のなす角$\theta \ (0<\theta<\pi)$を求めよ.
(3)$3$個のサイコロを同時に投げるとき,出る目の積が$10$の倍数である確率を求めよ.
九州大学 国立 九州大学 2013年 第2問
座標平面上で,次の連立不等式の表す領域を$D$とする.
\[ x+2y \leqq 5,\quad 3x+y \leqq 8,\quad -2x-y \leqq 4,\quad -x-4y \leqq 7 \]
点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$x+y$の値が最大となる点を$\mathrm{Q}$とし,最小となる点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)点$\mathrm{Q}$および点$\mathrm{R}$の座標を求めよ.
(2)$a>0$かつ$b>0$とする.点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$ax+by$が点$\mathrm{Q}$でのみ最大値をとり,点$\mathrm{R}$でのみ最小値をとるとする.このとき,$\displaystyle \frac{a}{b}$の値の範囲を求めよ.
熊本大学 国立 熊本大学 2013年 第1問
$n$を$3$以上の奇数として,次の集合を考える.
\[ A_n=\left\{ \; _n \mathrm{C}_1,\ _n \mathrm{C}_2,\ \cdots,\ _n \mathrm{C}_{\frac{n-1}{2}} \; \right\} \]
以下の問いに答えよ.

(1)$A_9$のすべての要素を求め,それらの和を求めよ.
(2)$\displaystyle _n \mathrm{C}_{\frac{n-1}{2}}$が$A_n$内の最大の数であることを示せ.
(3)$A_n$内の奇数の個数を$m$とする.$m$は奇数であることを示せ.
広島大学 国立 広島大学 2013年 第1問
$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.座標平面上で原点$\mathrm{O}$を通り傾きが$\tan \theta$の直線を$\ell$とし,行列
\[ \left( \begin{array}{cc}
\cos^2 \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin^2 \theta
\end{array} \right) \]
の表す$1$次変換を$f$とする.座標平面上に$2$点$\mathrm{P},\ \mathrm{Q}$がある.次の問いに答えよ.

(1)線分$\mathrm{OP}$が直線$\ell$と垂直であるとき,$1$次変換$f$による点$\mathrm{P}$の像を求めよ.
(2)$1$次変換$f$による点$\mathrm{Q}$の像を$\mathrm{R}$とする.このとき$|\overrightarrow{\mathrm{OR}}| \leqq |\overrightarrow{\mathrm{OQ}}|$が成り立つことを示せ.さらに等号が成立する場合を調べよ.
(3)$1$次変換$f$による点$(1,\ 1)$の像を$\mathrm{S}$とする.このとき$|\overrightarrow{\mathrm{OS}}|$が最大となる$\theta$と最小となる$\theta$をそれぞれ求めよ.
静岡大学 国立 静岡大学 2013年 第3問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形$\mathrm{PQRS}$について考える.頂点$\mathrm{P}$と$\mathrm{Q}$は弧$\mathrm{AB}$上に,残りの$2$頂点はそれぞれ辺$\mathrm{OA}$と$\mathrm{OB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とする.このとき,次の問いに答えよ.

(1)長方形$\mathrm{PQRS}$の面積を,$\alpha$と$\theta$の三角比を用いて表せ.
(2)長方形$\mathrm{PQRS}$の面積が最大になるときの$\alpha$を$\theta$で表せ.
(3)$\displaystyle \theta=\frac{\pi}{3}$のとき,長方形$\mathrm{PQRS}$の面積の最大値を求めよ.
静岡大学 国立 静岡大学 2013年 第1問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$がある.長方形$\mathrm{PQRS}$は,扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形の中で面積が最大のものである.このとき,次の問いに答えよ.

(1)頂点$\mathrm{P}$と$\mathrm{Q}$が弧$\mathrm{AB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とするとき,$\alpha$を$\theta$で表せ.
(2)長方形$\mathrm{PQRS}$の面積を$\theta$の三角比を用いて表せ.
(3)長方形$\mathrm{PQRS}$が正方形であるときの$\theta$の値を求めよ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。